Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Assessment Metric Identification and Evaluation for Side Airbag (SAB) Development

2011-04-12
2011-01-0257
This paper discusses steps for identifying, evaluating and recommending a quantifiable design metric or metrics for Side Airbag (SAB) development. Three functionally related and desirable attributes of a SAB are assumed at the onset, namely, effective SAB coverage, load distribution and efficient energy management at a controlled force level. The third attribute however contradicts the “banana shaped” force-displacement response that characterizes the ineffective energy management reality of most production SAB. In this study, an estimated ATD to SAB interaction energy is used to size and recommend desired force-deformation characteristic of a robust energy management SAB. The study was conducted in the following three phases and corresponding objectives: Phase 1 is a SAB assessment metric identification and estimation, using a uniform block attached to a horizontal impact machine.
Technical Paper

Air-Bag Inflator Gas-Jet Evaluation

1993-03-01
930237
This paper directs attention to a specific region of the air-bag deployment process. Both experimental and analytical results are presented. Experimental procedures and their results are presented along with a two dimensional unsteady isentropic CFD model and a empirical gas-jet model.
Journal Article

Analysis of Vehicle Front Impact Pulse Severity in US NCAP

2020-04-14
2020-01-0986
There have been multiple studies on the effect of vehicle impact pulses on occupant responses, and studies on the previous and current US NCAP (New Car Assessment Program) vehicle pulses. This paper analyzes 35 mph (56.3 kph) front impact vehicle pulses and occupant responses in US NCAP tests conducted by the NHTSA from 2011 to 2019. Based on the occupant response analysis, a simple generic occupant restraint force-relative displacement model has been created. This generic model captures the fundamental restraint characteristics of the vehicles in the recent years, and together with the vehicle pulse, they provide several occupant response predictors. Furthermore, this paper proposes a new pulse severity metric PSD (Pulse Severity by Displacement) based on the vehicle impact data statistics, and uses the pulse severity to compare with other pulse severity definitions.
Technical Paper

Using Triaxial Angular Rate Sensor and Accelerometer to Determine Spatial Orientation and Position in Impact Tests

2009-04-20
2009-01-0055
A data processing algorithm is presented for determining the spatial orientation and position of a rigid body in impact tests based on an instrumentation scheme consisting of a triaxial angular rate sensor and a trialaxial linear accelerometer. The algorithm adopts the unit quaternion as the main parameterized representation of the spatial orientation, and calculates its time history by solving an ordinary differential equation with the angular rate sensor reading as the input. Two supplemental representations, the Euler angles and the direction cosine matrix, are also used in this work, which provide an intuitive description of the orientation, and convenience in transforming the linear accelerometer output in the instrumentation frame to the global frame. The algorithm has been implemented as a computer program, and a set of example impact tests are included to demonstrate its application.
X