Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Effects of Different Biodiesels and their Blends with Oxygenated Additives on Emissions from a Diesel Engine

2008-06-23
2008-01-1812
Biodiesel is an alternative, renewable, clean fuel, which can effectively reduce emissions from diesel engines. However, the effects of biodiesel on engine emissions vary due to the difference in source. In this paper, performance of five different biodiesels was studied: CME, SME, RME, PME and WME. Engine power, fuel consumption, gaseous emissions and PM, DS and none soot fraction (NSF) were investigated in a Cummins ISBe6 Euro III diesel engine fueled with five biodiesels respectively and compared with the diesel fuel. Results revealed that using different biodiesels resulted in PM reductions ranging from 53% to 69%, which included DS reduction ranging from 79% to 83%. Observations showed that fuel oxygen content and viscosity had obvious effects on DS. Higher oxygen content biodiesels produced less DS at high load while lower viscosity biodiesels produced less DS at low load.
Technical Paper

Effects of Fuel Quality on a Euro IV Diesel Engine with SCR After-Treatment

2008-04-14
2008-01-0638
Beijing will implement the 4th stage emission regulations (equivalent to Euro IV) in 2008 ahead of other provinces or cites in China. Beijing Environmental Protection Bureau (EPB) organized petroleum corporations, automobile and engine manufactories as well as research institutes to test the adaptability of the fuels from Chinese refineries to the modern vehicles or engines on the road running conditions in China. In this paper, the effects of diesel fuel quality on combustion and emission of a Euro IV heavy-duty diesel engine as one part of the program were studied to provide technical data to stipulate the feasible diesel fuel standard, which should guarantee modern vehicles or engines to meet the 4th stage regulations. Eight kinds of diesel fuels with different properties, such as cetane number, distillation temperature (T90) and sulfur content, were tested on a Euro IV Cummins heavy-duty diesel engine with urea SCR after-treatment.
Technical Paper

The Effect of Oil Intrusion on Super Knock in Gasoline Engine

2014-04-01
2014-01-1224
Super knock which occurs in highly boosted spark ignition engines in low speed pre-ignition regime can lead to severe engine damage. However, super knock occurs occasionally, it is difficult to clearly identify the causes. The widely accepted assumption for the cause of this phenomenon is oil intrusion. Most of oils have been proved to have higher cetane number than n-heptane dose, indicating that the intruded oil is very liable to auto-ignition in a boosted engine. Although there have been reported the type of base oil and additive has significant effect on pre-ignition frequency, the oil induced super knock is still so far not supported by any direct evidence. This paper presents the effect of direct oil intrusion into cylinder on super knock. The experiment was carried out in a single cylinder engine. The diluted oil by gasoline with different ratio was directly injected into cylinder using a modified single-hole injector with 4MPa injection pressure.
X