Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Reaction Analysis and Modeling of Fast SCR in a Cu-Chabazite SCR Catalyst Considering Generation and Decomposition of Ammonium Nitrate

2021-09-05
2021-24-0073
In this study, reaction path analysis and modeling of NOx reduction phenomena by fast SCR reaction on a Cu-chabazite catalyst were conducted, considering the formation and decomposition of ammonium nitrate (NH4NO3). White crystals of NH4NO3 decompose at temperatures < 200 °C. Thus, the reaction behavior changes at 200 °C under fast SCR reaction conditions. NH4NO3 formation can occur on both Cu sites and Brønsted acid sites, which are active sites for NOx reduction in the Cu-chabazite catalyst, but it is unclear where NH4NO3 accumulates on the catalyst. Analyses using catalyst test pieces with different active sites were performed to estimate this accumulation. The results suggested that NH4NO3 accumulation does not depend on the presence of either Cu sites or Brønsted acid sites. Therefore, it is assumed that NH4NO3 can be accumulated everywhere on the catalyst, including on the zeolite framework. This phenomenon was included in the model as formation/accumulation sites S'.
Technical Paper

Numerical Simulation Accounting for the Finite-Rate Elementary Chemical Reactions for Computing Diesel Combustion Process

2005-09-11
2005-24-051
To facilitate research and development of diesel engines, the universal numerical code for predicting diesel combustion has been favored for the past decade. In this paper, the finite-rate elementary chemical reactions, sometimes called the detailed chemical reactions, are introduced into the KIVA-3V code through the use of the Partially Stirred Reactor (PaSR) model with the KH-RT break-up, modified collision and velocity interpolation models. Outcomes were such that the predicted pressure histories have favorable agreements with the measurements of single and double injection cases in the diesel engine for use in passenger cars. Thus, it is demonstrated that the present model will be a useful tool for predicting ignition and combustion characteristics encountered in the cylinder.
X