Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

The Fluid Induced Vibration Analysis on an Integrated Exhaust Manifold

2013-04-08
2013-01-0937
With its advantages on cost and performance, the integrated exhaust manifold (casting with the turbine) is being used on more vehicles by auto makers. Generally, when compared with the divided exhaust manifold, the integrated exhaust manifold stands for higher vibratory excitation from gas dynamics. In this paper, the gas dynamics excitation has been computed through the GD (gas dynamics) software GT-Power which calculates the exhaust pipe surface pressure, and CFD code Star-CCM+ which calculates the turbine blade force. And the response of manifold has been solved under this excitation. On the other hand, the mechanical excitation has been computed through the MBD (multi-body dynamics) platform AVL-Excite-PU, and the responses under the gas excitation plus the mechanical load have been studied in order to analyze the effects of the fluid excitation on an integrated manifold.
Technical Paper

A Reduced Chemical Kinetic Mechanism of Toluene Reference Fuel (toluene/n-heptane) for Diesel Engine Combustion Simulations

2015-04-14
2015-01-0387
In the present study, we developed a reduced chemical reaction mechanism consisted of n-heptane and toluene as surrogate fuel species for diesel engine combustion simulation. The LLNL detailed chemical kinetic mechanism for n-heptane was chosen as the base mechanism. A multi-technique reduction methodology was applied, which included directed relation graph with error propagation and sensitivity analysis (DRGEPSA), non-essential reaction elimination, reaction pathway analysis, sensitivity analysis, and reaction rate adjustment. In a similar fashion, a reduced toluene mechanism was also developed. The reduced n-heptane and toluene mechanisms were then combined to form a diesel surrogate mechanism, which consisted of 158 species and 468 reactions. Extensive validations were conducted for the present mechanism with experimental ignition delay in shock tubes and laminar flame speeds under various pressures, temperatures and equivalence ratios related to engine conditions.
X