Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

A Study of NO and Soot Evolution in a DI Diesel Engine via Planar Imaging

1993-03-01
930973
An experimental study has been conducted to characterize NO and soot evolution in an optically-accessible D.I. diesel engine with a square combustion chamber. Two-dimensional laser-induced fluorescence was used to characterize NO evolution. Soot evolution was characterized by two-dimensional laser-induced incandescence (LII) and Mie scattering techniques as well as direct photography of the flame luminosity. The engine operating parameters were set to provide optimum conditions for NO imaging. Attenuation of the UV beam proved to be the major obstacle in obtaining NO images. Therefore, oxygen was added to the intake air charge in order to reduce the optical density of the combustion medium. The NO images showed that the NO formation started almost immediately after ignition and ceased no later than 40 degrees ATDC. No soot images could be obtained by the laser-induced incandescence or Mie scattering methods before 20 degrees ATDC since the soot concentration was very low.
Technical Paper

Quantitative Imaging Study of the Effects of Intake Air Temperature on Soot Evolution in an Optically-Accessible D.I. Diesel Engine

1994-10-01
942044
Simultaneous laser-induced incandescence and light scattering measurements were used to obtain images of the evolving soot field within an optically-accessible DI diesel engine. Optimum signal collection parameters were established based on preliminary measurements in an ethylene diffusion flame. The effects of intake air temperature on soot formation during diesel combustion were investigated. Although increased soot production was evident for the higher intake air temperature cases, local particle diameters and number densities of the soot were unaffected for each of the cases tested.
X