Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Automated Wing Drilling System for the A380-GRAWDE

2003-09-08
2003-01-2940
On Airbus aircraft, the undercarriage reinforcing is attached through the lower wing skin using bolts up to 1-inch in diameter through as much as a 4-inch stack up. This operation typically takes place in the wing box assembly jigs. Manual hole drilling for these bolts has traditionally required massive drill templates and large positive feed drill motors. In spite of these large tools, the holes must be drilled in multiple steps to reduce the thrust loads, which adds process time. For the new A380, Airbus UK wanted to explore a more efficient method of drilling these large diameter holes. Introducing automated drilling equipment, which is capable of drilling these holes and still allows for the required manual access within the wing box assembly jig, was a significant challenge. To remain cost effective, the equipment must be flexible and mobile, a llowing it to be used on multiple assemblies.
Technical Paper

A Flexible Development System for Automated Aircraft Assembly

1996-10-01
961878
McDonnell Douglas Aircraft in St. Louis, MO manufacturers various transport and fighter military aircraft such as the C-17 and the F/A-18. With shrinking military budgets and increased competition, market forces demand high quality parts at lower cost and shorter lead times. Currently, a large number of different fastener types which include both solid rivets and interference bolts are used to fasten these assemblies. The majority of these fasteners are installed by hand or by using manually operated C-Frame riveters. MDA engineers recognized that in order to reach their goals they would be required to rethink all phases of the assembly system, which includes fastener selection, part fixturing and fastener installation methods. Phase 1 of this program is to identify and to develop fastener installation processes which will provide the required flexibility. The EMR fastening process provides this flexibility.
Technical Paper

Evaluation of the EMR for Swaging Collars on Advanced Composite Laminates

2005-10-03
2005-01-3299
The Boeing 787 Dreamliner will be the most fuel-efficient airliner in the world when it enters service in 2008. To help achieve this, Boeing will utilize state-of-the-art carbon fiber for primary structures. Advanced manufacturing techniques and processes will be used in the assembly of large composite structures. Electroimpact has proposed a system utilizing the low recoil Low Voltage Electromagnetic Riveter (LVER) to drill and install bolts. A test program was initiated between Boeing Materials Process and Engineering (MP&E) and Electroimpact to validate the LVER process for swaging titanium collars on titanium pins in composite material. This paper details the results of these tests.
X