Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Experimental Studies of EGR Cooler Fouling on a GDI Engine

2016-04-05
2016-01-1090
Cooled EGR provides benefits in better fuel economy and lower emissions by reducing knocking tendency and decreasing peak cylinder temperature in gasoline engines. However, GDI engines have high particle emissions due to limited mixing of fuel and air, and these particle emissions can be a major source of EGR cooler fouling. In order to improve our knowledge of GDI engine EGR cooler fouling, the effects of tube geometry and coolant temperature on EGR cooler performance and degradation were studied using a four cylinder 2.0L turbocharged GDI engine. In addition, deposit microstructure was analyzed to explore the nature of deposits formed under GDI engine operation. The results of this study showed that a dented tube geometry was more effective in cooling the exhaust gas than a smooth tube due to its large surface area and turbulent fluid motion. However, more deposits were accumulated and higher effectiveness loss was observed in the dented tube.
Technical Paper

Study of Effects of Thermal Insulation Techniques on a Catalytic Converter for Reducing Cold Start Emissions

2018-04-03
2018-01-1431
Previous work done at the University of Michigan shows the capability of the vacuum-insulated catalytic converter (VICC) to retain heat during soak and the resulting benefits in reducing cold start emissions. This paper provides an improved version of the design which overcomes some of the shortcomings of the previous model and further improves the applicability and benefits of VICC. Also, newer materials have been evaluated and their effects on heat retention and emissions have studied using the 1-D after treatment model. Cold start emissions constitute around 60% to 80% of all the hydrocarbon and CO emissions in present day vehicles. The time taken to achieve the catalyst light-off temperature in a three-way catalytic converter significantly affects the emissions and fuel efficiency. The current work aims at developing a method to retain heat in catalytic converter, thus avoiding the need for light-off and reducing cold start emissions effectively.
Technical Paper

Comparison of Plasma-Catalyst and Lean NOx Catalyst for Diesel NOx Reduction

2000-10-16
2000-01-2895
Projected NOx and fuel costs are compared for a plasma-catalyst system and an active lean NOx catalyst system. Comparisons are based on modeling of FTP cycle performance. The model uses steady state laboratory device characteristics, combined with measured vehicle exhaust data to predict NOx conversion efficiency and fuel economy penalties. The plasma system uses a proprietary catalyst downstream of a plasma discharge. The active lean NOx catalyst uses a catalyst along with addition of hydrocarbons to the exhaust. For the plasma catalyst system, NOx conversion is available over a wide temperature range. Increased electrical power improves conversion but degrades vehicle fuel economy; 10 J/L energy deposition costs roughly 3% fuel economy. Improved efficiency is also available with larger catalyst size or increased exhaust hydrocarbon content. For the active lean NOx system, NOx conversion is available only in a narrow temperature range.
X