Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Biomechanical Response and Injury Tolerance of the Thorax in Twelve Sled Side Impacts

1990-10-01
902307
Twelve side impact sled tests were performed using a horizontally accelerated sled and a Heidelberg-type seat fixture. In these tests the subject's whole body impacted a sidewall with one of three surface conditions: 1) a flat, rigid side wall, 2) a side wall with a 6″ pelvic offset, or 3) a flat, padded side wall. This series of runs provided a good test of how injury criteria perform under a variety of impact surface conditions. In this study thoracic injury criteria based on force, acceleration, compression, and velocity x compression (VC) were evaluated. Maximum compression and VCmax proved to be the best injury indicators in this series. Biomechanical response and injury tolerance are also presented.
Technical Paper

Biomechanical Response and Injury Tolerance of the Pelvis in Twelve Sled Side Impacts

1990-10-01
902305
Twelve side impact sled tests were performed using a horizontally accelerated sled and a Heidelberg-type seat fixture. The purpose of these tests was to better understand biomechanical response and injury tolerance in whole-body side impacts. In these tests the subject's whole body impacted a sidewall with one of three surface conditions: 1) a flat, rigid side wall, 2) a side wall with a 6″ pelvic offset, or 3) a flat, padded side wall. This paper presents the biomechanical response and injury tolerance data obtained for the pelvis. Peak values of sacral-y acceleration, pelvic force, compression and velocity x compression were evaluated as predictors of pelvic injury. Based on Logist analysis, Vmax x Cmax was the best predictor of probability of pelvic fracture in this test series, while peak pelvic force and peak compression also performed well.
Technical Paper

Thoracic Injury Mechanisms and Biomechanical Responses in Lateral Velocity Pulse Impacts

1999-10-10
99SC04
The purpose of this study is to help understand the thoracic response and injury mechanisms in high-energy, limited-stroke, lateral velocity pulse impacts to the human chest wall. To impart such impacts, a linear impactor was developed which had a limited stroke and minimally decreased velocity during impact. The peak impact velocity was 5.6 ± 0.3 m/s. A series of BioSID and cadaver tests were conducted to measure biomechanical response and injury data. The conflicting effects of padding on increased deflection and decreased acceleration were demonstrated in tests with BioSID and cadavers. The results of tests conducted on six cadavers were used to test several proposed injury criteria for side impact. Linear regression was used to correlate each injury criterion to the number of rib fractures. This test methodology captured and supported a contrasting trend of increased chest deflection and decreased TTI when padding was introduced.
Technical Paper

Shoulder Injury and Response Due to Lateral Glenohumeral Joint Impact: An Analysis of Combined Data

2005-11-09
2005-22-0014
To date, several lateral impact studies (Bolte et al., 2000, 2003, Marth, 2002 and Compigne et al., 2004) have been performed on the shoulder to determine the response characteristics and injury threshold of the shoulder complex. Our understanding of the biomechanical response and injury tolerance of the shoulder would be improved if the results of these tests were combined. From a larger data base shoulder injury tolerance criteria can be developed as well as corridors for side impact dummies. Data from the study by Marth (2002, 12 tests) was combined with data from the previous studies. Twenty-two low speed tests (4.5 ± 0.7 m/s) and 9 high speed tests (6.7 ± 0.7 m/s) were selected from the combined data for developing corridors. Shoulder force, deflection and T1y acceleration corridors were developed using a minimization of cumulative variance technique.
X