Refine Your Search

Search Results

Viewing 1 to 6 of 6
Video

AVTA - Plug-in Electric Vehicle Demonstration Results

2012-03-29
The Idaho National Laboratory is collecting data from grid-connected electric drive vehicles and charging infrastructure that have been deployed across the United States in five large-scale demonstrations funded by the U.S. Department of Energy. These demonstrations include The EV Project infrastructure demonstration, led by ECOtality North America; Coulomb Technologies� ChargePoint America infrastructure demonstration; General Motors� Chevrolet Volt extended range electric vehicle demonstration; Chrysler�s Ram plug-in hybrid electric vehicle demonstration; and the Ford Escape plug-in hybrid electric vehicle advanced research fleet demonstration. This presentation describes real-world vehicle and charging infrastructure usage observed during the early stages of these demonstrations. Presenter John Smart, Idaho National Lab.
Video

Introduction of the EV Project – the Largest Deployment of Electric Vehicles and Electric Vehicle Charging Infrastructures Ever Undertaken

2011-11-04
Electric vehicle codes and standards play a key role in deployment of interoperable charging and communication infrastructure. Harmonization of those standards on a global basis, even though they are not identical, they need to be compatible. There are a comprehensive set of EV standards, even standards to ensure that the EV, EVSE, energy measurement and electric utility are compatible (SAE J2953). This presentation is a summary of the state of standards and some of the commercial deployment of equipment that meets these standards. Presenter Eric Rask, Argonne National Laboratory
Journal Article

Actual Versus Estimated Utility Factor of a Large Set of Privately Owned Chevrolet Volts

2014-04-01
2014-01-1803
In order to determine the overall fuel economy of a plug-in hybrid electric vehicle (PHEV), the amount of operation in charge depleting (CD) versus charge sustaining modes must be determined. Mode of operation is predominantly dependent on customer usage of the vehicle and is therefore highly variable. The utility factor (UF) concept was developed to quantify the distance a group of vehicles has traveled or may travel in CD mode. SAE J2841 presents a UF calculation method based on data collected from travel surveys of conventional vehicles. UF estimates have been used in a variety of areas, including the calculation of window sticker fuel economy, policy decisions, and vehicle design determination. The EV Project, a plug-in electric vehicle charging infrastructure demonstration being conducted across the United States, provides the opportunity to determine the real-world UF of a large group of privately owned Chevrolet Volt extended range electric vehicles.
Journal Article

Battery Electric Vehicle Driving and Charging Behavior Observed Early in The EV Project

2012-04-16
2012-01-0199
In 2010, a large-scale plug-in electric vehicle (PEV) infrastructure demonstration was launched to deploy an unprecedented number of PEVs and charging infrastructure. This demonstration, called The EV Project, is funded by the U.S. Department of Energy and led by ECOtality North America. ECOtality has partnered with Nissan North America and General Motors to deploy up to 8,300 Nissan LEAF™ battery electric vehicles and Chevrolet Volt extended-range electric vehicles, along with approximately 14,000 AC Level 2 and DC fast-charging units in 18 metropolitan areas across the United States. ECOtality and the Idaho National Laboratory partnered to collect and analyze electronic data from EV Project vehicles and charging units. An early analysis of data from Nissan LEAFs enrolled in The EV Project was performed. The data set analyzed came from 2,903 privately owned vehicles, which logged over 10 million driving miles in 2011.
Technical Paper

Analysis of Fast Charging Station Network for Electrified Ride-Hailing Services

2018-04-03
2018-01-0667
Today’s electric vehicle (EV) owners charge their vehicles mostly at home and seldom use public direct current fast charger (DCFCs), reducing the need for a large deployment of DCFCs for private EV owners. However, due to the emerging interest among transportation network companies to operate EVs in their fleet, there is great potential for DCFCs to be highly utilized and become economically feasible in the future. This paper describes a heuristic algorithm to emulate operation of EVs within a hypothetical transportation network company fleet using a large global positioning system data set from Columbus, Ohio. DCFC requirements supporting operation of EVs are estimated using the Electric Vehicle Infrastructure Projection tool. Operation and installation costs were estimated using real-world data to assess the economic feasibility of the recommended fast charging stations.
Technical Paper

Extended Range Electric Vehicle Driving and Charging Behavior Observed Early in the EV Project

2013-04-08
2013-01-1441
ECOtality North America, OnStar, and the Idaho National Laboratory have partnered to collect and analyze electronic data from Chevrolet Volts enrolled in The EV Project, which is a large-scale plug-in electric vehicle infrastructure demonstration being conducted in 21 metropolitan areas across the United States. This paper presents results of an early analysis of these data. The data set analyzed came from 923 privately owned vehicles, which logged over 4.7 million driving miles from October 2011 to October 2012. These data are used to identify the potential of electric vehicle (EV) mode driving, based on driver and charging behavior. Driving and charging behavior is quantified with metrics such as daily vehicle miles traveled, number of charging events performed per day, and distance driven between consecutive charging events. Drivers averaged 40.7 miles per day, with a median of 31.6 miles per day.
X