Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Actual Versus Estimated Utility Factor of a Large Set of Privately Owned Chevrolet Volts

2014-04-01
2014-01-1803
In order to determine the overall fuel economy of a plug-in hybrid electric vehicle (PHEV), the amount of operation in charge depleting (CD) versus charge sustaining modes must be determined. Mode of operation is predominantly dependent on customer usage of the vehicle and is therefore highly variable. The utility factor (UF) concept was developed to quantify the distance a group of vehicles has traveled or may travel in CD mode. SAE J2841 presents a UF calculation method based on data collected from travel surveys of conventional vehicles. UF estimates have been used in a variety of areas, including the calculation of window sticker fuel economy, policy decisions, and vehicle design determination. The EV Project, a plug-in electric vehicle charging infrastructure demonstration being conducted across the United States, provides the opportunity to determine the real-world UF of a large group of privately owned Chevrolet Volt extended range electric vehicles.
Technical Paper

Extended Range Electric Vehicle Driving and Charging Behavior Observed Early in the EV Project

2013-04-08
2013-01-1441
ECOtality North America, OnStar, and the Idaho National Laboratory have partnered to collect and analyze electronic data from Chevrolet Volts enrolled in The EV Project, which is a large-scale plug-in electric vehicle infrastructure demonstration being conducted in 21 metropolitan areas across the United States. This paper presents results of an early analysis of these data. The data set analyzed came from 923 privately owned vehicles, which logged over 4.7 million driving miles from October 2011 to October 2012. These data are used to identify the potential of electric vehicle (EV) mode driving, based on driver and charging behavior. Driving and charging behavior is quantified with metrics such as daily vehicle miles traveled, number of charging events performed per day, and distance driven between consecutive charging events. Drivers averaged 40.7 miles per day, with a median of 31.6 miles per day.
X