Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Ambient Temperature Removal of Problematic Organic Compounds from ISS Wastewater

2002-07-15
2002-01-2534
Small, highly polar organics such as urea, alcohols, acetone, and glycols are not easily removed by the International Space Station's Water Recovery System. The current design utilizes the Volatile Removal Assembly (VRA) which operates at 125°C to catalytically oxidize these contaminants. Since decomposition of these organics under milder conditions would be beneficial, several ambient temperature biocatalytic and catalytic processes were evaluated in our laboratory. Enzymatic oxidation and ambient temperature heterogeneous catalytic oxidation of these contaminants were explored. Oxidation of alcohols proceeded rapidly using alcohol oxidase; however, effective enzymes to degrade other contaminants except urea were not found. Importantly, both alcohols and glycols were efficiently oxidized at ambient temperature using a highly active, bimetallic noble metal catalyst.
Technical Paper

Mesoporous Oxide Supported Catalysts for Low Temperature Oxidation of Dissolved Organics in Spacecraft Wastewater Streams

2004-07-19
2004-01-2405
Novel mesoporous bimetallic oxidation catalysts are described, which are currently under development for the deep oxidation (mineralization) of aqueous organic contaminants in wastewater produced on-board manned spacecraft, and lunar and planetary habitats. The goal of the ongoing development program is to produce catalysts capable of organic contaminant mineralization near ambient temperature. Such a development will significantly reduce Equivalent System Mass (ESM) for the ISS Water Processor Assembly (WPA), which must operate at 135°C to convert organic carbon to CO2 and carboxylic acids. Improvements in catalyst performance were achieved due to the unique structural characteristics of mesoporous materials, which include a three-dimensional network of partially ordered interconnected mesopores (5-25 nm).
X