Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Microwave-Powered Thermal Regeneration of Sorbents for CO2, Water Vapor and Trace Organic Contaminants

1997-07-01
972430
Feasibility of the use of microwave heating to achieve fast and efficient thermal regeneration of sorbents for the removal of carbon dioxide, water vapor, and trace organics from contaminated air streams has been conclusively demonstrated. The use of microwave power offers several advantages, including: improved heat transfer, lower thermal losses, improved power utilization, and enhanced operational capabilities. During the initial research, the sorption and microwave-powered thermal desorption of acetone, trichloroethylene (TCE), carbon dioxide, and water vapor was studied at 2.45 GHz using a rectangular waveguide based test apparatus. Both activated carbon and Carbosieve S-III were identified as excellent microwave regenerable sorbents for use in the removal of airborne organics. Water loaded silica gel, Molecular Sieve 13X, and Molecular Sieve 5A were also effectively regenerated under microwave irradiation at this frequency.
Technical Paper

Development and Testing of a Microwave Powered Regenerable Air Purification Technology Demonstrator

2002-07-15
2002-01-2403
Dielectric heating via microwave irradiation of contaminant laden sorbents offers distinct advantages in comparison to conventional thermal regeneration techniques. High temperatures may be achieved very rapidly because electromagnetic energy is absorbed directly by the sorbent material. A Technology Demonstrator, incorporating efficient rectangular waveguide based sorbent cartridge designs and effective microwave transmission systems was designed, fabricated and tested. Importantly, the performance of the Molecular Sieve 13X Waveguide Cartridge for the removal of water vapor, the Molecular Sieve 5A Waveguide Cartridge for the removal of CO2, and the Activated Carbon Waveguide Cartridge for removal of volatile organics from air, were each validated by successive sorption/ microwave desorption cycles.
X