Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

VRA Flight Experiment Sample Stability Study

1997-07-01
972377
Design concepts for the International Space Station Water Processor (WP) will be validated as discrete flight experiments on-board the Space Shuttle Spacehab. This paper summarizes the results of a study into sample stability within a modified Teflon cell culture bag assembly to support an upcoming Spacehab evaluation of the WP Volatile Removal Assembly (VRA). Results indicate that a lack of adequate preservation results in significant sample analyte degradation over the course of 2-3 week due to increased microbial activity. Results were utilized for the definition of an optimal preservation approach based on the anticipated VRA Flight Experiment samples.
Technical Paper

Space Station Condensing Heat Exchanger Biofilm Formation and Control Evaluation

1992-07-01
921383
The Space Station Temperature and Humidity Control Condensing Heat Exchangers will be utilized to remove and collect atmospheric water vapor generated by the metabolic and hygienic activity of crew members. The porous hydrophilic coating within the heat exchangers will be continually moist and in contact with a steady flow of cabin air which makes them susceptible to microbial growth. This paper summarizes the findings from an ongoing study to evaluate biofilm formation characteristics and microbial control techniques for the Space Station Condensing Heat Exchangers (CHX). This ongoing study examines whether the CHX's are susceptible to performance degrading microbial colonization with microbial challenge testing under simulated system environmental conditions. Furthermore, the three candidate microbial control approaches of periodic heating, periodic drying and incorporation of an antimicrobial agent, into the hydrophilic coating are evaluated.
Technical Paper

Assessment of the Microbial Control Measures for the Temperature and Humidity Control Subsystem Condensing Heat Exchanger of the International Space Station

1999-07-12
1999-01-2109
In August 1997 NASA/Marshall Space Flight Center (MSFC) began a test with the objective of monitoring the growth of microorganisms on material simulating the surface of the International Space Station (ISS) Temperature and Humidity Control (THC) Condensing Heat Exchanger (CHX). The test addressed the concerns of potential uncontrolled microbial growth on the surface of the THC CHX subsystem. For this study, humidity condensate from a closed manned environment was used as a direct challenge to the surfaces of six cascades in a test set-up. The condensate was collected using a Shuttle-type CHX within the MSFC End-Use Equipment Testing Facility. Panels in four of the six cascades tested were coated with the ISS CHX silver impregnated hydrophilic coating. The remaining two cascade panels were coated with the hydrophilic coating without the antimicrobial component, silver. Results of the fourteen-month study are discussed in this paper.
X