Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Investigation of Inflatable Belt Restraints

1991-10-01
912905
Studies conducted in the 1970's suggested that inflatable belt restraints might provide a high level of occupant protection based on experiments with dummies, cadavers and volunteers. Although inflating the belt was one factor which contributed to achieving these experimental results, much of the reported performance was associated with other features in the restraint system. Exploratory experiments with the Hybrid III dummy indicated similar trends to previous studies, belt inflation reducing dummy response amplitudes by pretensioning and energy absorption while reducing displacement. The potential advantage of an increased loaded area by an inflatable belt could not be objectively demonstrated from previous studies or from dummy responses. Clearly, belt inflation can be one component of a belt restraint system which tends to reduce test response amplitudes. However, other belt system configurations have demonstrated similar test response amplitudes.
Technical Paper

Characterization of Belt Restraint Systems in Quasistatic Vehicle Rollover Tests

1997-11-12
973334
In this study, we investigate a new method of testing the occupant kinematics in a rollover crash situation. Much of this work is based on previous full scale vehicle studies by Orlowski and Bahling (1,2). Their work concentrated on FMVSS 208 dolly rollover tests of vehicles equipped with production and reinforced vehicle roofs. They found that the occupant's kinematics, as opposed to roof crush, were responsible for potentially injurious neck injuries as a result of diving type accident kinematics of the head and torso. This led us to examine seat system, belt restraint system and belt restraint anchorage designs that could potentially improve the occupants head to roof clearance. A simulated vehicle environment with representative seat and belt restraint systems was chosen as the baseline system. These quasistatic tests applied a rigid roof I seat and belt restraint geometry. Kinematics of a 50th percentile Hybrid Ill dummy were analyzed in the quasistatic test procedure.
X