Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Characterization of Belt Restraint Systems in Quasistatic Vehicle Rollover Tests

1997-11-12
973334
In this study, we investigate a new method of testing the occupant kinematics in a rollover crash situation. Much of this work is based on previous full scale vehicle studies by Orlowski and Bahling (1,2). Their work concentrated on FMVSS 208 dolly rollover tests of vehicles equipped with production and reinforced vehicle roofs. They found that the occupant's kinematics, as opposed to roof crush, were responsible for potentially injurious neck injuries as a result of diving type accident kinematics of the head and torso. This led us to examine seat system, belt restraint system and belt restraint anchorage designs that could potentially improve the occupants head to roof clearance. A simulated vehicle environment with representative seat and belt restraint systems was chosen as the baseline system. These quasistatic tests applied a rigid roof I seat and belt restraint geometry. Kinematics of a 50th percentile Hybrid Ill dummy were analyzed in the quasistatic test procedure.
Technical Paper

Measurement of Head Dynamics and Facial Contact Forces In the Hybrid III Dummy

1986-10-27
861891
Injury and disability associated with head (brain), neck (spinal cord) and facial injury account for 61.7% of the total societal Harm in the most recent estimate of motor-vehicle related crash injuries. This paper discusses the need for accurate information on translational and rotational acceleration of the head as the first step in critiquing the Head Injury Criterion (HIC) and other injury predictive methods, and developing a fuller understanding of brain and spinal cord injury mechanisms. A measurement system has been developed using linear accelerometers to accurately determine the 3D translational and rotational acceleration of the Hybrid III dummy head. Our concept has been to use the conventional triaxial accelerometer in the dummy's head to assess translational acceleration, and three rows of in-line linear accelerometers and a least squares analysis to compute statistical best-fits for the rotational acceleration about three orthogonal axes.
X