Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Aerodynamic Enablers Review for Automotive Applications

2016-10-25
2016-36-0203
Automakers are seeking more efficient and green vehicles projects in terms of fuel consumption and CO2 emissions. Several factors are directly related to the performance and one of the most important is the aerodynamics. Cars with smooth geometries and transitions are expected to have a better aerodynamic behavior compared with the ones with rough geometries. Regardless the vehicle geometry changes, another way to improve the aerodynamics is by adding new parts, in order to improve the drag coefficient of the car. Most of the time, these parts are added but the functionality is not well defined. The main objective of this work is to identify, explain the way it should work and some applications of additional aeroparts. Those parts could be assembled in a vehicle in order to improve the drag coefficient, have a better fuel economy and lower emissions rate.
Technical Paper

Performance Comparison of Different Chamber designs for Ventilated Disk Brake

2017-11-07
2017-36-0240
Environment concerns lead the automakers to invest resources and put research in engine downsize to reduce carbon emission. Turbo charge is a possibility due to its fuel consumption and emission reduction without compromise the performance. Nowadays, it is becoming common observe high performance small cars due to high torque and power available. In consequence, brake system need to dissipate more kinetic energy without adding mass or costs. Modern passenger cars require a high-speed brake system. To achieve proper brake system cooling, the rotor must be ventilated and designed to optimize the energy dissipated, which is generated by friction between pad and disk. Some approaches consider the rotor as a centrifugal air pump and the design rule is to improve the airflow inside the vanes. The approach considering a brake rotor similar to centrifugal air pump rotor may be considered as limited approach, once it simplifies the heat transfer phenomena inside chamber.
Technical Paper

Multiphase Fuel Filling Simulation Methodology to Evaluate Different Filler Neck Designs

2015-09-22
2015-36-0297
Vehicle fuel filling may not occur the fastest way, mainly due to the filler neck geometry and low fuel flow from the pump. When the fuel tank in empty, the previous interferences are increased, once the inner pressure increases, complicating even more the fuel filling activity. Another problem that occurs due to poor filler neck design is fuel pump nozzle shut off, once the fuel flow can’t overcome the tank inner pressure causing fuel to return, turning off the pump or even leakage. The recent advances in CFD Codes and computational power allowed multiphase simulations to be performed in production level by the industries worldwide. This paper takes advantage of these advances and proposes a methodology for fuel filling simulation using multiphase CFD simulation in order to evaluate a filler neck design, by measuring the total filling time.
X