Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

Engine Performance and Exhaust Characteristics of Direct-injection Diesel Engine Operated with DME

1997-10-01
972973
Neat dimethyl ether (DME), as an alternative fuel candidate for Diesel engines, was investigated by measuring primarily engine performance and exhaust gas characteristics. In addition, other responses of the engine to the new fuel were also determined at the same time, including the injector needle lift and heat release. The engine measurements with this fuel were compared with those obtained by using conventional Diesel fuel. Findings from the present work include: (1) It was necessary to add a small amount of lubricating additives to DME, if a conventional fuel injection system is employed.
Technical Paper

A Timed Fuel-Injection Spark-Ignition Engine Operated by Methanol Fuels

1990-02-01
900355
The combustion in a spark ignition engine was studied when it was fueled by neat methanol using the timed injection method at the intake port. The measurements from this fueling were compared with those obtained from a carburetor fueled operation. In the study, results of the cylinder pressure analysis and the in-cylinder high-speed photographic observation showed that the reaction in the timed methanol engine combustion had multiple-stage combustion processes. The multiple-stage reaction was pronounced based on the double spikes in heat release history and droplets individually burning in the mixture. The injection time for the best methanol fueled engine operation seemed to be that right after the intake valve opening when the lowest specific fuel consumption was obtained with smallest cyclic variation in the pressure-time history and when the lowest emissions (NOx, UHC and HCHO) were produced.
Technical Paper

Knock Effects on Spark-ignition Engine Emission and Performance

1990-02-01
900712
The effects of knock with varied intensity on spark-ignition engine performance and emission characteristics were investigated using a single-cylinder CFR engine operated by several different fuels. The variation of knock under a fixed engine speed was obtained by operating the engine using different octane numbers of the fuel and the variation of fuel's octane number was made as follows: For gasoline, two fuels having different octane ratings were used to obtain three different octane-number fuels, 85.3, 87.1, and 88.9; for gasoline/alcohol blend fuels, the volumetric alcohol contents in the blend were 0, 5, and 10% to obtain octane ratings of 85.3, 85.7 and 86.2, respectively; for natural gas (with over 94.5% methane by volume), small different amounts of alcohol were introduced into the stream of gas to produce octane numbers of 116, 118 and 120. For the same fuel, the knock intensity was stronger at lower engine speed and lower with high octane number.
Technical Paper

Direct Injection Diesel Engine Operated with Propane - DME Blended Fuel

1998-10-19
982536
A novel way of using low-cetane-number petroleum gases in a compression ignition (CI) engine is introduced, by directly injecting blends of such fuels with dimethyl ether (DME), a high-cetane-number alternative fuel for low soot emissions. This method both extends advantages of DME and complements its deficiency. Although DME mixes with most hydrocarbon fuels in any ratio, in order to demonstrate the feasibility of the new method and facilitate the analysis, DME-propane blends were investigated in a direct injection CI engine. Some findings of the study are listed. In the engine operated by DME and propane blends, there was no need for significantly increasing the complexity of the fuel system than that employed in the use of neat DME. For the same reason, this method eliminates or minimizes cumbersome hardware necessary when the said gaseous fuels are separately introduced in CI engines.
Technical Paper

A Spark Ignition Engine Operated by Oxygen Enriched Air

1992-10-01
922174
The impact of minutely oxygen-enriched air on spark-ignition (SI) engine combustion was studied by obtaining engine performance measurements and investigating in-cylinder reactions. This study was initiated to determine if development of a new air-cleaner method, which may employ molecular sieve or membrane technology to slightly increase the oxygen concentration in the inducted air, is beneficial for engine operations. The air introduced into a single-cylinder SI engine was added with oxygen to produce oxygen concentrations of 21, 22 and 23%. Some results from engine tests performed with the oxygen enrichment are: The heat release lag, cycle variation and combustion period decreased; substantial reduction of emissions of unburned hydrocarbon emission and noticeable decrease of carbon monoxide were observed; and the brake thermal efficiency and engine output increased.
Technical Paper

MTBE for Improved Diesel Combustion and Emissions?

1994-09-01
941688
Reduced emissions from the spark-ignition engine, when fueled by gasoline containing small amounts of MTBE, have led us to explore similar positive results in compression-ignition (CI) engine combustion by adding this oxygenate compound to Diesel fuel. This study was performed in two separate laboratories by employing the respective experimental apparatus. When a pre-chamber type CI engine was operated by using Diesel fuel mixed with several volume portions of MTBE, including 5, 10 and 15%, several positive results were obtained, as compared with those from the baseline neat Diesel-fueled operations: (1) The engine delivers overall comparable or better performance characteristics; (2) The brake thermal efficiency is higher at the advanced and late injection times; (3) Some considerable reduction of both soot and NOx emissions is found; (4) The ignition delay increases but the combustion duration decreases.
Technical Paper

Wall Effect on Flame Propagation in Crevices

1982-02-01
820090
The relationship of crevices to the formation of unreacted hydrocarbons in engine combustion remains to be determined. In order to help understand its processes the present paper reports the experimental results obtained from the wall effect on flame propagation in various clearances which were placed in a constant-volume charged with premixed fuel-air gases. The photographic observations revealed that the flame propagation was accelerated in some clearances with both ends open. Furthermore, it was discovered that there is an optimum clearance that creates the most rapid flame propagation through a contained combustible mixture. The smallest optimum clearance was measured in a slightly richer mixture than stoichiometric; the greater clearance was measured in leaner or richer mixtures exhibiting a characteristic quite similar to the dependence of quenching distance to fuel/air ratio. In clearances with one end open the flame propagated slower than outside the clearances.
Technical Paper

Incomplete Combustion in one-End-Open Crevices

1983-10-31
831695
The present paper considers the processes of incomplete combustion in in-cylinder crevices with clearances slightly greater than quenching distance. For this, an experimental work has been carried out by using a premixed constant-volume combustion chamber. In the chamber, the propagation of flame through the combustible gas contained in individual crevices with various geometries was investigated by two means: high speed schlieren photography to obtain the idiosyncrasy of the in-crevice flame behavior; and fast-response thin-film thermocouples mounted flush with the crevice wall to measure the flame propagation speed, the instantaneous surface temperature, the instantaneous heat flux through the crevice wall, etc. From the investigation, the origins of unburned hydrocarbons formed in the in-cylinder crevices were surmised.
Technical Paper

In-cylinder Liquid Fuel Layers, Cause of Unburned Hydrocarbon and Deposit Formation in SI Engines?

1999-10-25
1999-01-3579
In-cylinder reaction processes in a production port-fuel-injection (PFI) spark-ignition engine having optical access were visualized using a high speed four-spectra IR Imaging system. Over one thousand sets of digital movies were accumulated for this study. To conduct a close analysis of this vast amount of results, a new data analysis and presentation method was developed, which permits the simultaneous display of as many as twenty-eight (28) digital movies over a single PC screen in a controlled manner, which is called the Rutgers Animation Program (RAP for short). The results of this parametric study of the in-cylinder processes (including the period before and after the presence of luminous flame fronts) suggest that, even after the engine was well warmed, liquid fuel layers (LFL) are formed over and in the vicinity of the intake valve to which the PFI was mated.
Technical Paper

Post-Flame Oxidation and Unburned Hydrocarbon in a Spark-Ignition Engine

1995-10-01
952543
Many recent publications indicate that spark ignition (SI) engines equipped with the conventional port-injection fuel system (PIF) seem to have serious fuel-maldistribution problems, including the formation of liquid layers over the combustion chamber surfaces. It is reasonable to expect that such a maldistribution is an unfavorable condition for the flame propagation in the cylinder. The in-cylinder flame behaviors of a PIF-SI engine as fueled with gasoline are investigated by using the Rutgers high-speed spectral infrared imaging system. These results are then compared with those obtained from the same engine operated by gaseous fuels and other simple fuels. The results from the engine operated by gasoline reveal slowly burning fuel-rich local pockets under both fully warmed and room-temperature conditions. The local pockets seem to stem from the liquid layers formed over the surfaces during the intake period.
X