Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Real Gas Effects in High-Pressure Engine Environment

2010-04-12
2010-01-0627
Real gas effects are studied during the compression stroke of a diesel engine. Several different real gas models are compared to the ideal gas law and to the experimental pressure history. Comparisons are done with both 1-D and CFD simulations, and reasons and answers are found out for the observed differences between simulations and experimental data. The engine compression ratio was measured for accurate model predictions. In addition, a 300bar extreme pressure case is also analyzed with the real gas model since an engine capable for this performance level is currently being built at the Aalto University School of Science and Technology. Real gas effects are even more important in these extreme conditions than in normal operating pressures. Finally, it is shown that the predicted pressure history during an engine compression stroke by a real gas model is more accurately predicted than by the ideal gas law.
Technical Paper

Effect of Turbulence Boundary Conditions to CFD Simulation

2011-04-12
2011-01-0835
The CFD simulation of diesel combustion needs as accurate initial values as possible to be reliable. In this paper the effect of spatial distribution of state and turbulence values at intake valve closure to those distributions prior to SOI is studied. Totally five cases of intake and compression stroke simulations are run. The only change between cases is the intake boundary condition of turbulence. In the last case the average values of p, T, k, ε and swirl number at intake valve closure are used as initial values to compression simulation. The turbulence in the engine cylinder is mainly generated in the very fast flow over the intake valves. In this paper the effect of boundary conditions of turbulence to its level at intake valve closure is studied. Several cases are simulated with different boundary conditions of turbulence. Also the swirl number is compared to experimental value.
Technical Paper

Computational Considerations of Fuel Spray Mixing in an HCCI Operated Optical Diesel Engine

2009-04-20
2009-01-0710
Fuel spray mixing has been analyzed numerically in a single-cylinder optical research engine with a flat piston top. In the study, a narrow spray angle has been used to align the sprays towards the piston top. Fuel spray mass flow rate has been simulated with 1-D code in order to have reliable boundary condition for the CFD simulations. Different start of fuel injections were tested as well as three charge air pressures and two initial mixture temperatures. Quantitative analysis was performed for the evaporation rates, mixture homogeneity at top dead center, and for the local air-fuel ratios. One of the observations of this study was that there exists an optimum start of fuel injection when the rate of spray evaporation and the mixture homogeneity are considered.
X