Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Assessment of Silver Based Disinfection Technology for CEV and Future US Spacecraft: Microbial Efficacy

2007-07-09
2007-01-3142
This work describes the microbiological assessment and materials compatibility of a silver-based biocide as an alternative to iodine for the Crew Exploration Vehicle (CEV) and future spacecraft potable water systems. In addition to physical and operational anti-microbial counter-measures, the prevention of microbial growth, biofilm formation, and microbiologically induced corrosion in water distribution and storage systems requires maintenance of a biologically-effective, residual biocide concentration in solution and on the wetted surfaces of the system. Because of the potential for biocide depletion in water distribution systems and the development of acquired biocide resistance within microbial populations, even sterile water with residual biocide may, over time, support the growth and/or proliferation of bacteria that pose a risk to crew health and environmental systems.
Technical Paper

Performance of a Small Scale Biological Water Recovery System

2003-07-07
2003-01-2557
The objective of this study was to evaluate the treatment efficiency and reliability of a small-scale (1/20th) replica of the JSC biological treatment system over an extended period of time (18 months of operation). The two biological reactor components were an anaerobic packed bed for denitrification and an aerobic tubular reactor for nitrification. A recycle line (20X) linked the two biological reactors. Effectiveness of the biological system to treat a waste stream (1 L/day) containing water, urine, and soap (Igepon T42) was quantified by monitoring total nitrogen and organic carbon. Distribution of nitrogen in the effluent was measured and consisted of ammonium, nitrite, and nitrate. Daily concentrations of total nitrogen in the influent varied greatly. The system achieved 50% removal of total nitrogen and 80% removal of the influent organic carbon. The results indicate improved treatment effectiveness and resiliency with time.
Technical Paper

Development of a Gravity Independent Nitrification Biological Water Processor

2003-07-07
2003-01-2560
Biological water processors are currently being developed for application in microgravity environments. Work has been performed to develop a single-phase, gravity independent anoxic denitrification reactor for organic carbon removal [1]. As a follow on to this work it was necessary to develop a gravity independent nitrification reactor in order to provide sufficient nitrite and nitrate to the organic carbon oxidation reactor for the complete removal of organic carbon. One approach for providing the significant amounts of dissolved oxygen required for nitrification is to require the biological reactor design to process two-phase gas and liquid in micro-gravity. This paper addresses the design and test results overview for development of a tubular, two-phase, gravity independent nitrification biological water processor.
X