Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

CO2 Discharge in Case of Fire Suppression for COLUMBUS APM

1993-07-01
932269
The COLUMBUS APM employs CO2 stored in centralized tank or, as backup, in portable fire extinguishers (PFEX) for the suppression of eventual fire events. The conditions of the 2-phase flow of the CO2 in the tank and in the ducting system are an important parameter for the layout of the system. In this paper the analytical and experimental work performed to determine these flow conditions and the results for the baseline fire suppression system shall be given.
Technical Paper

Analysis of C02-Distribution in the COLUMBUS Subfloor Area for Fire Suppression Purposes

1992-07-01
921289
Potential fires in the COLUMBUS Attached Pressurized Module (APM) shall be extinguished by reducing the O2 concentration in the atmosphere below 15 %. For this purpose a CO2-distribution system is foreseen. It injects CO2 stored in a tank into the volume where fire is to be extinguished. Due to its dimensions the most critical of these volumes is the subfloor with the stand-off areas. To investigate the fire suppression process a detailed three dimensional computational fluid dynamic analysis (CFD-analysis) was performed. The transient CO2-distribution mechanisms, forced convection and diffusion, were analyzed to examine the feasibility of the foreseen system and to optimize it. In this paper the governing physical processes and their implementation in the mathematical model of the problem are described. The very complex inlet conditions - speed of sound, tiny nozzles - are examined in detail to investigate a proper method for implementation in the mathematical model.
Technical Paper

Revised Cabin Loop Concept for COLUMBUS APM

1994-06-01
941306
The redesign of the international Space Station Freedom (SSF) and funding constraints in the ESA member states caused a redirection of the development effort for the Attached Pressurised Module (APM). For the ECLSS the most important changes are the reduction in length of the module in order to make it compatible with the ARIANE V capabilities and the more severe cost constraints. As a result new concepts for the cabin loop were investigated leading to a decrease in cabin loop power consumption, mass and volume and a reduced development effort due to a lower number of items. In the previous concept a module internal loop with a flow rate of 864m3/hr and an Intermodule Ventilation (IMV) flow rate for air revitalisation to the station with 240m3/hr were installed. The revised boundary conditions with a reduced overall massflow rate of 540m3/hr allows the combination of the cabin loop and the IMV with limited impact on the total power consumption.
X