Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Development of the N-Type Runflat Tire and Its Evaluation in Vehicle Dynamics

1979-02-01
790668
Judging from viewpoint of automotive safety and more space by eliminating a spare tire, the development of the run-flat tires is important. Many problems relating to weight increase and usability had to be solved in the course of the development of such tires. The “ N ” type run-flat tire, described in this paper, has a simple structure with reinforced side walls and additional beads to fit the rim flanges. Though this tire system brought about a small amount of weight increase, it needs no special part, therefore the conventional road wheels, air valves and tire changers may be used. We have tested and evaluated this tire system equipped with passenger cars as well as on the test machines. Especially vehicle dynamics such as steering, stability and so forth were tested. The test results indicated that this tire system is practical enough.
Technical Paper

Spray Characteristics and Inside Flow of a Marine Diesel Injector

2015-09-01
2015-01-1838
The spray characteristics and inside flow of a marine diesel injector were investigated both experimentally and numerically. From the experiments, we observed that the penetration of the sprays in the early injection stage gradually increases. This phenomenon differs significantly from that of the small automobile diesel injector, in which penetration increases linearly with time. Using the momentum method to obtain injection rate measurements, we observed an injection rate spike at each injection event just after the injection began. The observed spray results show that the small portion of fuel remaining inside the nozzle from the previous injection event is ejected first, and then the main volume of fuel is ejected. Both fuels accumulate as spray droplets and gradually accelerate after the early injection stage. Numerical simulations of the injector's inside flow show that the fuel injection rate becomes saturated in needle lifts larger than 0.3 mm.
X