Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Vehicle Structural Design Utilizing Optimized Finite Element Modeling

1998-02-23
981013
A study of an existing B-pillar was conducted to examine the changes required to increase the lateral load carrying capability by a factor of ten. A finite element optimization package was used to adjust the geometric and material characteristics simultaneously while minimizing weight. The results show that the weight and cost necessary for the ten-fold improvement in lateral load carrying capability were very low. Further, the results illustrate how structural design optimization with finite element modeling can be effectively utilized to create cost effective elements for use in an integrated occupant protection system.
Technical Paper

Vehicular Padding and Head Injury

2000-06-12
2000-05-0188
The Federal Motor Vehicle Safety Standard 571.201 discusses occupant protection with interior impacts of vehicles. Recent rule making by the National Highway Traffic Safety Administration (NHTSA) has identified padding for potential injury reduction in vehicles. Head injury mitigation with padding on vehicular roll bars was evaluated. After market 2 to 2.5 cm thick padding and metal air gap padding reduced the head injury criterion (HIC) and angular acceleration compared to the stock foam roll bar padding. Studies were conducted with free falling Hybrid 50% male head form drops on the fore head and side of the head. Compared to the stock roll bar material, a nearly 90% reduction in HIC was observed at speeds up to 5.4 m/s. A concomitant 83% reduction in angular acceleration was also observed with the metal air gap padding. A 2 to 2.5 cm thick Simpson roll bar padding produced a 70 to 75% reduction in HIC and a 59 to 73% reduction in angular acceleration.
Technical Paper

Sleeper Cab Occupant Protection in Heavy Truck Rollovers

2011-09-13
2011-01-2295
More than 900,000 long-haul sleeper cabs are projected to be on the road by 2030. About half of heavy truck occupant fatalities occur in rollovers. This paper discusses the current status of rollover protection systems for occupants in sleeper cabs and describes the outcomes from example crashes with sleeper cab occupants. A virtual testing methodology for evaluation of current designs under rollover conditions and restraint tests utilizing dummies and humans also are described. The paper includes discussion of finite element models used and their validation. Examples of results associated with various restraint system configurations are presented. The results show that incorporating effective lateral restraint is important in providing protection to sleeper cab occupants under rollover conditions.
X