Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

An Ultimate Engine: designed by Computational Fluid Dynamics

2011-08-30
2011-01-2027
A single lightweight engine capable of operating over a wide range of Mach numbers from startup to the hypersonic regime is proposed for automobiles and airplanes. Traditional piston engines, turbojet engines, and scram jet engines operate only under a narrower range of conditions. A compression system of colliding super multijets is proposed instead of a traditional turbofan. This ultimate engine system can be extended with a special piston system to achieve an improved fuel consumption rate, while maintaining a low noise level.
Technical Paper

Development Of Fugine Based on Supermulti-Jets Colliding with Pulse: Leading to Stable Plug-Less Start and Improvement of HCCI with Satisfactory Strength of Structure

2014-10-13
2014-01-2639
In our previous reports based on computational experiments and fluid dynamic theory, we proposed a new compressive combustion principle for an inexpensive, lightweight, and relatively quiet engine reactor that has the potential to achieve incredible thermal efficiency over 60% even for small combustion chambers having less than 100 cc. This level of efficiency can be achieved with colliding supermulti-jets that create complete air insulation to encase burned gas around the chamber center, thereby avoiding contact with the chamber walls, including the piston. We originally developed an actual prototype engine system for gasoline. The engine has a strongly-asymmetric double piston and the supermulti-jets colliding with pulse, although there are no poppet valves. The number of jets pulsed for intake and exhaust is eight, while both of bore and stroke are about 40mm.
X