Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

A Study on Optimization of an Over-Expansion Cycle Gasoline Engine with Late-Closing of Intake Valves

2007-09-16
2007-24-0089
This study presents the possibility of realizing better thermal efficiency in a spark-ignition engine with over-expansion cycle. The test engine with the displacement volume of 649cc was used together with four kinds of expansion ratios (geometric compression ratio) from 10 to 25, and four sets of intake valve closure timings from 0 to 110 ° C.A. ABDC. In previous studies, the indicated thermal efficiency reached 48% However, there was a problem that the maximum output was reduced to almost half compared with the conventional engine, since the effective displacement volume was decreased with decreasing the substantial compression ratio (εc). As a method of solving this problem, supercharging was applied by using compressed air supplied from an external compressor.
Technical Paper

A New Variable Valve Engine Applying Shuttle Cam Mechanism

1992-02-01
920450
Variable-valve-actuation mechanism is considered to be one of the most suitable solutions to realize the compatibility between higher power output and performances in the practical speed range. A new variable-valve-actuation mechanism named “Shuttle Cam” was designed and studied. In this mechanism which was applied to a conventional motorcycle engine with rocker arms and gear-train-driven valve system, the cam gears move along the idler gear. And cam shafts simultaneously slide along the rocker-arm slipper surfaces which are concentric with the idler gear. Consequently valve lift varies continuously in accordance with the alteration in the rocker-arm lever ratio and the cam phasing changes simultaneously in accordance with the cam gear rotation. Result of the experiments has confirmed that the mechanism functions accurately even at high speeds up to 10,000 rpm and some improvements were achieved in power output, fuel consumption, idling quality, and exhaust-noise level.
X