Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Crash Simulations to Understand Injury Mechanisms in Maneuver Induced Rollover Crashes

2004-03-08
2004-01-0330
Real world crashes in NASS/CDS 1997 to 2000 were examined individually in order to find patterns in single vehicle rollover crashes. Typical maneuver induced rollovers of SUV's were reconstructed using the HVE model. From HVE and roll event reconstructions, the values of longitudinal, lateral, and vertical displacement, and roll, pitch, and yaw angle, for the pre-roll and rollover event were calculated. These values were used as inputs to a MADYMO model for simulated vehicle motion to predict occupant kinematics. Both near-side and far-side rollovers were simulated. The MADYMO model provided estimates of head velocity for the various rollover scenarios for a belted driver. In both near-side and far-side rollovers of the type reconstructed, the lateral component of head velocity was the greatest. Maximum head velocities of 5.3 m/s were predicted. The simulations were for two complete rollovers. The highest head velocity occurred during the first three quarter turns.
Technical Paper

Opportunities for Reducing Casualties in Far-side Crashes

2006-04-03
2006-01-0450
This paper uses the National Automotive Sampling System/Crashworthiness Data System (NASS/CDS) to estimate the population of front seat occupants exposed to far-side crashes and those with MAIS 3+ and fatal injuries. Countermeasures applicable to far-side planar crashes may also have benefits in some far-side rollovers. The near-side and far-side rollover populations with MAIS 3+ injuries and fatalities are also calculated and reported. Both restrained and unrestrained occupants are considered. Populations are subdivided according to ejection status – not ejected, full ejection, partial ejection and unknown ejection. Estimates are provided for the annual number of MAIS 3+ injuries and fatalities that occur each year in each category for the following belt use scenarios: (1) belt use as reported in NASS and (2) 100% belt use. In scenario 1, the exposure and casualties for the unbelted population are also shown. About 34% of the MAIS 3+F injuries in side crashes are in far-side crashes.
X