Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Bolt-Load Retention Behavior of a Die Cast Magnesium-Rare Earth Alloy

2001-03-05
2001-01-0425
The need for improved understanding of new magnesium alloys for the automotive industry continues to grow as the application for these lightweight alloys expands to more demanding environments, particularly in drivetrain components. Their use at elevated temperatures, such as in transmission cases, presents a challenge because magnesium alloys generally have lower creep resistance than aluminum alloys currently employed for such applications. In this study, a new die cast magnesium alloy, MEZ, containing rare earth (RE) elements and zinc as principal alloying constituents, was examined for its bolt-load retention (BLR) properties. Preloads varied from 14 to 28 kN and test temperatures ranged from 125 to 175°C. At all test temperatures and preloads, MEZ retained the greatest fraction of the initial imposed preload when compared to the magnesium alloys AZ91D, AE42, AM50, and the AM50+Ca series alloys.
Technical Paper

Creep and Bolt Load Retention Behavior of Die Cast Magnesium Alloys for High Temperature Applications: Part 2 of 2

2000-03-06
2000-01-1120
The effect of calcium on the creep and bolt load retention (BLR) behavior of AM50 alloy has been investigated. Four AM50 alloys 0, 0.25, 0.56, and 0.88% Ca have been die-cast. BLR-tests have been conducted at 125, 150, and 175°C and preloads of 14, 21, and 28kN. Tensile and compressive creep tests were also conducted at 150°C and initial stresses from 40 to 80 MPa. Both creep and BLR were significantly influenced by calcium content, with increasing calcium content resulting in improved relaxation resistance. The BLR of AM50 with 0.88% Ca was better than that of AE42 at all temperatures although the effect of calcium was temperature dependent. Calcium did not change the sensitivity of BLR to preload, while it increased the relaxation limit (Fr) of AM50 significantly. In addition, calcium improved the creep resistance of AM50 significantly.
X