Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Numerical Calculation of PM Trapping and Oxidation of Diesel Particulate Filter with Catalyst by One Dimensional Model

2020-09-15
2020-01-2169
Exhaust gas from the diesel engine contains particulate matter (PM) of soot that affects human health and the environment. For the reduction of the emission of the PM, the diesel particulate filter (DPF) is placed in the exhaust system. The pressure drops increases with the PM deposit quantity in the DPF, which results in the burden of the engine. Therefore, the PM should be removed regularly by oxidation process called regeneration. Consumption of fuel is improved by optimizing the timing of regeneration. However, it is difficult to visualize the behavior of PM trapping and oxidation. We have proposed a series of models from PM deposition to the oxidation process in the DPF. In this study, the behavior of deposition and oxidation of PM in the DPF with a catalyst are calculated. The numerical calculations are performed to estimate PM deposition-oxidation process within the DPF. The results are obtained using the simplified model constructed in this study.
Technical Paper

Development of New Concept Three-Way Catalyst for Automotive Lean-Burn Engines

1995-02-01
950809
A new 3-way catalyst with NOx conversion performance for lean-burn engines has been developed. The catalyst oxidizes NOx and stores the resulting nitrate, which is then reduced by HC and CO during engine operation around the stoichiometric air/fuel ratio. Both the composition of the storage component and the particle sizes of the noble metal were optimized. In addition, a special air fuel mixture control has been developed to make the best of the NOx storage-reduction function. The present catalyst showed 90% conversion efficiency and improved fuel economy by 4% in the Japanese 10-15 mode test cycle. The efficiency remained at 60% or more after durability test.
X