Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

DEVELOPMENT OF A WHIPLASH INJURY REDUCING SEAT SYSTEM USING BIORID II DUMMY

2001-06-04
2001-06-0057
In recent years, several kinds of seat systems that aim to reduce cervical spinal injuries in rear impacts, so called ‘whiplash injuries’, have been released by some car manufacturers and seat suppliers in the world. Meanwhile, several kinds of dummies have been developed to be representatives of occupants under such conditions. One of these is the BioRID II equipped with a realistic spine constructed of multiple vertebrae similar to that of a human. It is regarded as the most biofidelic dummy for low speed rear impact. Using this dummy, some typical ‘whiplash protective’ seat systems currently available were dynamically tested to see their performance on injury reduction. From the results of these tests, the design direction to lessen the injury level more efficiently was determined.
Technical Paper

A Simulation Analysis of Human Cervical Spine Motion During Low Speed Rear-End Impacts

2000-03-06
2000-01-0154
The non-physiological motions of human cervical vertebrae were analyzed in volunteer tests for rear-end impacts and were considered to be an important parameter for neck injuries. The objectives of this study are to improve the Marko de Jager neck model using volunteer test data and to analyze the influence of horizontal and vertical accelerations on cervical vertebral motion. In the beginning of this study, a neck model was positioned based on X-ray cineradiography of a volunteer. Motions of each vertebra were compared with those of volunteer test data for low speed rear-end impacts (4, 6, 8km/h). In these comparisons, the differences of vertebrae motions between the neck model and the volunteer tests were found. To improve the validity of the neck model, the connection properties and the bending properties of the upper and lower vertebrae of the model were modified to increase rigidity.
X