Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

The Definition of Space Life Support System Preliminary Configuration Based on a Single Criteria Approach

2001-07-09
2001-01-2366
This paper reviews the preliminary definition of integrated life support system configurations based on a single criterion decision-making task (SCDMT). Comparative analysis results are shown for currently used effectiveness models based on SCDMT. Possible areas of application for those models are determined. It is also proven that well-known effectiveness model, which uses an equivalent mass approach to determine system expenditures, can be used only in cases where useful effect from system operation is the same. The article proposes the use of a global thermodynamic effectiveness criterion based on the exergy method to account for ECLSS functional expenditures, i.e. functional costs. Exergy is a concept that fuses energy and material quality information in a measure that is both descriptive and physically significant. This method accounts for nonequivalence of different forms of energy and allows measuring technological flows in the system using same measuring units.
Technical Paper

Water Recovery and Oxygen Generation by Electrolysis Aboard the International Space Station

2002-07-15
2002-01-2358
The paper deals with the construction and performance data of the service module Zvezda water and oxygen supply systems of the International Space Station (ISS). The performance data at the first 14 months of manned station functioning are provided. The data of humidity condensate and recovered water compositions are reviewed. The water supply and demand balance are analyzed. The system of oxygen generation “Electron-VM” and its functioning results are reviewed. The effective cooperation of the international partners on part of life support is shown.
Technical Paper

Trace Contaminant Dynamics Simulation Model for TCRS Design Concept

2005-07-11
2005-01-2861
This paper deals with the development of the Trace Contaminant Dynamics Simulation Model (TCDSM) intended for the design concept of Trace Contaminants Removal System (TCRS) in development of a Space Vehicle Manned Pressurized Module (PM). The formalized description of the TCDSM includes the nonlinear equations of mass balance for the specific contaminants and the formalized descriptions of the contaminants sources and sinks. The crew and the PM non-metallic structural materials are main sources of contaminants. The air environments of the docking resupply (RSV) and crew-carrying space vehicles (CCSV) are the additional sources and sinks of the contaminants. The formalized description of the TCRS as the main sink of the contaminants takes into account the specific contaminants removal features based on the distribution factors defining its adsorptive capacity.
X