Refine Your Search

Search Results

Viewing 1 to 9 of 9
Journal Article

Fuel Accounting Analysis during Cranking and Startup using Simultaneous In-Cylinder and Exhaust Fast FID and NDIR Detectors

2008-04-14
2008-01-1309
Optimization of in-cylinder air-fuel mixture preparation in Port Fuel Injected (PFI) engines during all phases of operation is critical for maximizing engine performance while minimizing harmful emissions. In this study, a Cooperative Fuels Research (CFR) gasoline engine is used to evaluate torque and measure in-cylinder and exhaust CO, CO2 and unburned hydrocarbons under various fueling and spark conditions during crank and startup phases. Fast Flame Ionization Detectors (FFID) and Non-Dispersive Infra-Red (NDIR) fast CO and CO2 detectors are used as the principle diagnostics. Additionally, detailed cycle resolved fuel accounting is performed to elucidate the fuel vaporization process from injection to exhaust. The majority of liquid fuel accumulation in the engine puddles occurs within 3 engine cycles after cranking begins. Post combustion UHCs were seen to reach levels of 40-80% of pre-combustion UHC values.
Journal Article

Pre-Ignition Characteristics of Ethanol and E85 in a Spark Ignition Engine

2008-04-14
2008-01-0321
Ethanol based fuels have seen increased use in recent years due to their renewable nature as well as increased governmental regulatory mandates. While offering performance advantages over gasoline, especially at high compression ratios, these fuels are more sensitive to pre-ignition (PI). Pre-ignition experiments using ethanol (E100) and E85 were performed in a CFR spark ignition engine using a diesel glow plug “hot spot” to induce PI. PI is found to occur over a specific air-fuel ratio range based on hot spot temperature. Additionally, increasing ethanol content or compression ratio (CR) decreases glow plug temperature thresholds for PI. A kinetics-based model was used to simulate pre-ignition of E100 and to elucidate sensitivities of pre-ignition to various operating parameters, including initial charge temperature, air dilution, and residual dilution. The model shows that the most violent cases of PI can be mitigated by switching to either lean or rich operation.
Journal Article

The Effects of Intake Plenum Volume on the Performance of a Small Normally Aspirated Restricted Engine

2008-12-02
2008-01-3007
Intake tuning is a widely recognized method for optimizing the performance of a naturally aspirated engine for motorsports applications. Wave resonance and Helmholtz theories are useful for predicting the impact of intake runner length on engine performance. However, there is very little information in the literature regarding the effects of intake plenum volume. The goal of this study was to determine the effects of intake plenum volume on engine performance for a restricted naturally aspirated engine for Formula SAE (FSAE) vehicle use. Testing was conducted on a four cylinder 600 cc motorcycle engine fitted with a 20 mm restrictor in compliance with FSAE competition rules. Plenum sizes were varied from 2 to 10 times engine displacement (1.2 to 6.0 L) and engine speeds were varied from 3,000 to 12,500 RPM. Performance metrics including volumetric efficiency, torque and power were recorded at steady state conditions.
Technical Paper

Combustion of Biodiesel- and Ethanol-Diesel Intake Injection Mixtures with

2007-10-29
2007-01-4011
Seven biofuel-diesel fuel configurations were tested in a single-cylinder research diesel CFR engine that allowed variable injection timing. These seven configurations included three biodiesel-diesel blends (20% and 100%); two ethanol-diesel blends (15% and 20%), and two cases in which ethanol was injected into the intake air flow (20% and 33%). Combustion characteristics, NOx emissions, and soot emissions were compared with diesel operation across a range of injection timings. The effect of fuel compressibility affected the timing of injection, with biodiesel-diesel blends having advanced injection and ethanol-diesel blends having delayed injection. Biodiesel-diesel blends showed reduced ignition delay with only modest changes in combustion duration, while ethanol-diesel mixtures showed longer ignition delay but much shorter combustion duration and earlier phasing.
Technical Paper

Cranking-Startup Intake Port and In-Cylinder Mixture Preparation Behavior in a CFR Gasoline Engine

2007-07-23
2007-01-1833
Engine startup experiments with intake port sampling were performed in a modified fuel injected single cylinder gasoline CFR research engine. Immediately after fuel injection, port fuel-air vapor sampling was performed in order to quantify the role of the fuel injector in creating a combustible mixture for the first cycle of engine startup. In-cylinder sampling was also performed to clarify the role of other mixture preparation mechanisms in the startup process. Sample analysis was performed using gas chromatography. Experimental data were also collected during steady-state operating conditions at the same intake port pressure and temperature as that of the first cranking cycle for comparison. Results show that approximately ½ to ¾ of a near stoichiometric combustible 1st cycle charge, as a function of first cycle fueling, is produced immediately after enriched cranking fuel injection.
Technical Paper

An Experimental and Modeling Investigation into the Comparative Knock and Performance Characteristics of E85, Gasohol [E10] and Regular Unleaded Gasoline [87 (R+M)/2]

2007-04-16
2007-01-0473
In the near future increasing use of ethanol in motor fuels will occur due to legislative mandates. E10 (Gasohol) and E85 will see more widespread use in spark ignition engines. This study looks at the performance and knock characteristics of E10 and E85 in comparison to regular gasoline. Detailed experimental engine data and analysis as a function of compression ratio, ignition timing and fueling are presented with associated physical explanations. Comparative results are presented. Increasing ethanol content provides for greater engine torque, efficiency and knock tolerance, yet fuel consumption worsens. Knock limited trends and sensitivities are presented, for example, 5 degrees of spark retard are required with E10 and gasoline for each compression ratio increase, while the much less sensitive E85 requires only 2 degrees of retard for each compression ratio increase. Trends with efficiency and torque are described amongst the fuels tested.
Technical Paper

The Effects of Intake Geometry on SI Engine Performance

2009-04-20
2009-01-0302
Intake tuning is a relatively simple alternative to turbochargers and superchargers as a means of augmenting engine performance. Capitalizing on air flow harmonics at specific engine speeds, intake tuning forces more air into the engine cylinders, resulting in greater torque and power. Concepts such as Helmholtz Resonance Theory and Reflective Wave Theory help to describe the physical phenomena that contribute to intake tuning, but previous studies have generally found that computer models utilizing computational fluid dynamics (CFD) are needed to accurately predict performance effects. The current research involves testing various intake runner lengths and cross section geometries on a Honda CBR600 F4i gasoline engine typically used to power a Formula SAE car. Also, the effect of adding 180 degree bends to intake runners is evaluated.
Technical Paper

Single Cylinder Diesel Engine Startup Experiments with Cycle Resolved Emissions Sampling

2009-04-20
2009-01-0614
Fast emissions analysis, soot analysis, and pressure sensing is utilized to examine the first few seconds before, and after startup in a single-cylinder CFR diesel engine. The equivalence ratio, compression ratio, and injection timing are varied. The data show that UHC and CO emissions are highest at the highest and lowest fueling conditions, while NOx emissions peaked at intermediate fueling conditions. Leaner operating conditions show delayed starting but reduced ignition delay. Oil vapor causes soot emissions prior to first combustion, and soot particle size shifts higher during the first few seconds after combustion begins. Injection timing has little effect except at the leanest equivalence ratios, where a retarded injection timing increases the delay until a successful combustion event. At lower compression ratios, large IMEP oscillations occurred during startup. The data suggest possible strategies to optimize diesel startup.
Technical Paper

An Investigation into the Onset of Knock in a CFR Engine

2006-10-16
2006-01-3344
Internal combustion engine knock has limited compression ratios of spark ignition engines for most of the history of gasoline engines. This limitation continues to exist today. While knock is generally a low engine speed, high load phenomenon, this operating condition is infrequently used by many vehicle operators, and if the engine is brought to this operating condition generally little time is spent in this knock prone condition. This study seeks to investigate the transition into knock due to throttle changes from part to full load. The experimental results using a CFR engine operating on iso-octane fuel show that knock is delayed by at least one high load engine cycle after the throttle is opened. Optimization of spark timing to account for this effect provides for the best increase of engine load without audible knock occurring.
X