Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

A New Chassis Dynamometer Laboratory for Vehicle Research

2013-04-08
2013-01-0402
In recent years the need for testing, calibration and certification of automotive components and powertrains have increased, partly due to the development of new hybrid concepts. At the same time, the development within electrical drives enables more versatile chassis dynamometer setups with better accuracy at a reduced cost. We are developing a new chassis dynamometer laboratory for vehicle research, aiming at extending a recently commercially available dynamometer, building a new laboratory around it, and applying the resulting facility to some new challenging vehicle research problems. The projects are enabled on one hand by collaboration with the dynamometer manufacturer, and on the other hand on collaboration with automotive industry allowing access to relevant internal information and equipment. The test modes of the chassis dynamometer are under development in a joint collaboration with the manufacturer.
Technical Paper

Dynamic Vehicle Simulation -Forward, Inverse and New Mixed Possibilities for Optimized Design and Control

2004-03-08
2004-01-1619
Inverse dynamic simulation is a successful method to make fast simulations of powertrains modeled using vehicle velocity and acceleration. This method is here extended so that additional dynamics can be included, and it is compared to the standard/usual forward dynamic simulation. Simulation results show that extended inverse dynamic simulation is a good method for maintaining speed and increasing accuracy in simulations. This gives the possibility to use the inverse dynamic simulation as a tool for powertrain optimization and control strategy evaluation.
Technical Paper

A New Model for Rolling Resistance of Pneumatic Tires

2002-03-04
2002-01-1200
Rolling resistance of inflated tires is a factor that contributes to the total load and fuel consumption of a vehicle. Therefore, models of rolling resistance is an important area within computer simulations of vehicles used to predict fuel consumption and emissions. In these applications the coefficient of rolling resistance is usually described as a function of velocity. We have earlier shown that this is not a satisfactory solution [1, 2]. In this paper it is demonstrated that the temperature of the tires is a dominating factor for rolling resistance in real driving. The tires typically start at ambient temperature and are then warmed up by the heat generated in the tire. As the temperature increases the rolling resistance decreases (to some limit). After a long period (2 hours for truck tires) of driving at constant conditions, a stationary temperature (and rolling resistance) is reached.
X