Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Investigation of Low Power Operation in a Loop Heat Pipe

2001-07-09
2001-01-2192
This paper presents test results of an experimental study of low power operation in a loop heat pipe. The main objective was to demonstrate how changes in the vapor void fraction inside the evaporator core would affect the loop behavior. The fluid inventory and the relative tilt between the evaporator and the compensation chamber were varied so as to create different vapor void fractions in the evaporator core. The effect on the loop start-up, operating temperature, and capillary limit was investigated. Test results indicate that the vapor void fraction inside the evaporator core is the single most important factor in determining the loop operation at low powers.
Technical Paper

Capillary Limit in a Loop Heat Pipe with a Single Evaporator

2002-07-15
2002-01-2502
This paper describes a study on the capillary limit of a loop heat pipe (LHP) at low powers. The slow thermal response of the loop at low powers makes it possible to observe interactions among various components after the capillary limit is exceeded. The capillary limit at low powers is achieved by imposing an additional pressure drop on the vapor line through the use of a metering valve. A differential pressure transducer is also used to measure the pressure drop across the evaporator and the compensation chamber (CC). Test results show that when the capillary limit is exceeded, vapor will penetrate the primary wick, resulting in an increase of the CC temperature. Because the evaporator can tolerate vapor bubbles, the LHP will continue to function and may reach a new steady state at a higher operating temperature. Thus, the LHP will exhibit a graceful degradation in performance rather than a complete failure.
Technical Paper

Design Evolution of the Capillary Pumped Loop (CAPL 2) Flight Experiment

1996-07-01
961431
The Capillary Pumped Loop Flight Experiment (CAPL 2) employs a passive two-phase thermal control system that uses the latent heat of vaporization of ammonia to transfer heat over long distances. CAPL was designed as a prototype of the Earth Observing System (EOS) instrument thermal control systems. The purpose of the mission was to provide validation of the system performance in microgravity, prior to implementation on EOS. CAPL 1 was flown on STS-60 in February, 1994, with some unexpected results related to gravitational effects on two-phase systems. Start-up difficulties on CAPL 1 led to a redesign of the experiment (CAPL 2) and a reflight on STS-69 in September of 1995. The CAPL 2 flight was extremely successful and the new “starter pump” design is now baselined for the EOS application. This paper emphasizes the design history, the CAPL 2 design, and lessons learned from the CAPL program.
Technical Paper

Testing of A Loop Heat Pipe Subjected to Variable Accelerating Forces, Part 2: Temperature Stability

2000-07-10
2000-01-2489
Loop Heat Pipes (LHPs) are being considered for cooling of military combat vehicles and spinning spacecraft. In these applications, it is important to understand the effect of an accelerating force on the performance of LHPs. In order to investigate such an effect, a miniature LHP was installed on a spin table and subjected to variable accelerating forces by spinning the table at different angular speeds. Several patterns of accelerating forces were applied, i.e. continuous spin at different speeds and periodic spin at different speeds and frequencies. The resulting centrifugal accelerations ranged from 1.2 g's to 4.8 g's. This paper presents the second part of the experimental study, i.e. the effect of an accelerating force on the LHP operating temperature. It has been known that the LHP operating temperature under a stationary condition is a function of the evaporator power and the condenser sink temperature when the compensation temperature is not actively controlled.
X