Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Flight Testing of the Two-Phase Flow Flight Experiment

1998-07-13
981816
The Two Phase Flow (TPF) Experiment is an integrated two-phase thermal control system designed to address capillary pumped loop component and system performance issues. The Two Phase Flow Experiment was flown aboard the Space Shuttle Discovery (STS-85) from August 7 - 19, 1997 as part of the Technology Applications and Science-01 (TAS-01) mission. The experiment was contained in a Hitchhiker canister and consisted of a capillary pumped loop (CPL), electronics, and associated instrumentation and wiring. The CPL contained four capillary evaporators (two large diameter and two small diameter), two parallel condensers, a two-phase temperature controlled reservoir, liquid and vapor tubing, individual capillary isolators, and a capillary vapor flow valve. The system working fluid was anhydrous ammonia. The system was operated for a total of 176 hours during the mission with 61 test cycles performed.
Technical Paper

Capillary Limit in a Loop Heat Pipe with a Single Evaporator

2002-07-15
2002-01-2502
This paper describes a study on the capillary limit of a loop heat pipe (LHP) at low powers. The slow thermal response of the loop at low powers makes it possible to observe interactions among various components after the capillary limit is exceeded. The capillary limit at low powers is achieved by imposing an additional pressure drop on the vapor line through the use of a metering valve. A differential pressure transducer is also used to measure the pressure drop across the evaporator and the compensation chamber (CC). Test results show that when the capillary limit is exceeded, vapor will penetrate the primary wick, resulting in an increase of the CC temperature. Because the evaporator can tolerate vapor bubbles, the LHP will continue to function and may reach a new steady state at a higher operating temperature. Thus, the LHP will exhibit a graceful degradation in performance rather than a complete failure.
X