Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Laboratory Evaluation of Safety-Related Additives for Neat Methanol Fuel

1990-10-01
902156
An extensive literature search was conducted and potential additive candidates were identified to improve the safety aspects associated with the use of methanol as a motor fuel. Before any laboratory measurements were conducted, candidate additives were evaluated for possible formation of known or suspected toxic compounds as combustion products. The remaining potential additives were then screened for their effectiveness in improving methanol fuel properties in a laboratory test program emphasizing flame luminosity, lubricity, and flammability. Flame luminosity was measured with a specially designed system to monitor the light produced by the flame in lux. Lubricity was measured with a Ball-on-Cylinder Lubricity Evaluator (BOCLE). For flammability limits, a device was designed to determine the presence of flammable vapors above the liquid at different additive concentrations.
Technical Paper

Cold-Start Hydrocarbon Collection for Advanced Exhaust Emission Control

1992-02-01
920847
This paper describes the findings of a laboratory effort to demonstrate improved automotive exhaust emission control with a cold-start hydrocarbon collection system. The emission control strategy developed in this study incorporated a zeolite molecular sieve in the exhaust system to collect cold-start hydrocarbons for subsequent release to an active catalytic converter. A prototype emission control system was designed and tested on a gasoline-fueled vehicle. Continuous raw exhaust emission measurements upstream and downstream of the zeolite molecular sieve revealed collection, storage, and release of cold-start hydrocarbons. Federal Test Procedure (FTP) emission results show a 35 percent reduction in hydrocarbons emitted during the cold-transient segment (Bag 1) due to adsorption by the zeolite.
Technical Paper

Fuel Effects on Emissions from an Advanced Technology Vehicle

1992-10-01
922245
A 1991 Toyota Camry equipped with an electrically-heated catalyst (EHC) system was evaluated in duplicate over the Federal Test Procedure (FTP) with three different fuels. Evaluations were conducted with the EHC in place but without any external heating, and with the EHC operated with a post-crank heating strategy. The EHC system was placed immediately upstream of an original production catalyst, which was then moved to a location 40.6 cm from the exhaust manifold. The three test fuels were: 1) the Auto/Oil industry average gasoline, RF-A; 2) a fuel meeting California's Phase II gasoline specifications; and 3) a paraffinic test fuel. Non-methane organic gas (NMOG) emission rates with the EHC active were similiar with all three fuels, with absolute levels less than or equal to California's 50,000 mile Ultra-Low Emission Vehicle (ULEV) standard. Substantial differences, however were observed in the ozone forming potential of these fuels with the EHC active.
Technical Paper

Reactivity and Exhaust Emissions from an EHC-Equipped LPG Conversion Vehicle Operating on Butane/Propane Fuel Blends

1996-10-01
961991
This paper describes experiments conducted to determine Federal Test Procedure (FTP) exhaust emissions, ozone-forming potentials, specific reactivities, and reactivity adjustment factors for several butane/propane alternative fuel blends run on a light-duty EHC-equipped gasoline vehicle converted to operate on liquefied petroleum gas (LPG). Duplicate emission tests were conducted on the light-duty vehicle at each test condition using appropriate EPA FTP test protocol. Hydrocarbon speciation was utilized to determine reactivity-adjusted non-methane organic gas (NMOG) emissions for one test on each fuel.
Technical Paper

Unregulated Exhaust Emissions from Methanol-Fueled Cars

1982-02-01
820967
This paper describes the characterization of regulated and unregulated exhaust emissions from two methanol-fueled automobiles. For comparison, two gasoline-fueled automobiles of the same make and model were also evaluated. These automobiles were evaluated over the Light-Duty Federal Test Procedure and the Highway Fuel Economy Driving Schedule. Additional evaluations with the methanol-fueled automobiles were conducted using promoted base metal catalysts, and one of these automobiles was tested in a non-catalyst configuration. Exhaust constiuents sampled for, in addition to the regulated emissions, include: aldehydes, particulate, individual hydrocarbons, methanol, ethanol, ammonia, cyanide, amines, nitrosamines, and methyl nitrite.
Technical Paper

Characterization of Exhaust Emissions from High Mileage Catalyst-Equipped Automobiles

1982-02-01
820783
This paper describes the characterization of regulated and unregulated exhaust emissions, particularly aldehydes, from ten 1978 and 1979 high mileage catalyst-equipped gasoline fueled automobiles which have been driven for approximately 50,000 miles. The ten automobiles were evaluated as-received and after a tune-up to manufacturer’s specifications, over the Light-Duty Federal Test Procedure (FTP) and the Highway Fuel Economy Driving Schedule (HFET). Exhaust constituents measured, in addition to the regulated emissions, include: aldehydes, particulates, sulfides, amines, and several additional compounds.
X