Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Unregulated Exhaust Emissions from Methanol-Fueled Cars

1982-02-01
820967
This paper describes the characterization of regulated and unregulated exhaust emissions from two methanol-fueled automobiles. For comparison, two gasoline-fueled automobiles of the same make and model were also evaluated. These automobiles were evaluated over the Light-Duty Federal Test Procedure and the Highway Fuel Economy Driving Schedule. Additional evaluations with the methanol-fueled automobiles were conducted using promoted base metal catalysts, and one of these automobiles was tested in a non-catalyst configuration. Exhaust constiuents sampled for, in addition to the regulated emissions, include: aldehydes, particulate, individual hydrocarbons, methanol, ethanol, ammonia, cyanide, amines, nitrosamines, and methyl nitrite.
Technical Paper

Characterization of Exhaust Emissions from High Mileage Catalyst-Equipped Automobiles

1982-02-01
820783
This paper describes the characterization of regulated and unregulated exhaust emissions, particularly aldehydes, from ten 1978 and 1979 high mileage catalyst-equipped gasoline fueled automobiles which have been driven for approximately 50,000 miles. The ten automobiles were evaluated as-received and after a tune-up to manufacturer’s specifications, over the Light-Duty Federal Test Procedure (FTP) and the Highway Fuel Economy Driving Schedule (HFET). Exhaust constituents measured, in addition to the regulated emissions, include: aldehydes, particulates, sulfides, amines, and several additional compounds.
Technical Paper

Characterization of Exhaust Emissions from Trap-Equipped Light-Duty Diesels

1989-09-01
891972
Two of the types of particulate trap systems that have evolved to control exhaust particulate matter include the catalyzed trap system and the additive-regenerated trap system. Exhaust emissions from these two types of trap systems have been characterized and quantified as completely as possible. The two vehicles evaluated in the study included a 1986 Mercedes-Benz 300 SDL, which utilizes a catalyzed trap system, and a prototype Volkswagen, which utilizes an additive trap system. The vehicles were tested using a chassis dynamometer, a dilution tunnel, and a constant volume sampler. The exhaust emissions were evaluated as to driving cycle, presence of particulate trap, engine condition, trap condition, and fuel aromatic content.
Technical Paper

Light-Duty Diesel FTP Emissions as Functions of Fuel Volatility and Aromatic Content

1986-08-01
861120
The influence of fuel composition on exhaust emissions from four 1982 model light-duty diesel vehicles was studied on the FTP cycle and at two steady-state conditions, but only the FTP results are presented and discussed in this paper. Nine test fuels were blended specifically for the program, with intentional variation in aromatic content, 90% boiling point, and 10% boiling point. Limited data were also acquired with injection timing at advanced and retarded settings, in addition to the main body of data taken with the engines adjusted to recommended timing. A comparatively small effort was also made to evaluate a tenth fuel consisting of a blend of two of the original nine fuels. Of the fuel characteristics varied intentionally, aromatic content generally had the greatest effect on most emissions of major interest (hydrocarbons, oxides of nitrogen, particulate, soluble organic fraction, polynuclear aromatic hydrocarbons, and mutagenicity of extract by Ames bioassay).
X