Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

CFD Design Tool Improves HVAC Design and Cuts Product Development Cycle Time

2008-04-14
2008-01-0238
In an effort to shorten and improve the efficiency of the product design process (PDP), Delphi has developed an application specific CFD design tool that helps design engineers optimize designs prior to prototyping. This new tool enables design engineers to set up an HVAC module, powertrain cooling system, or heat exchanger model for CFD analysis in relatively short time. The ability to evaluate and improve the design of the product at the very early stages of the development cycle greatly reduces the need for design changes late in the process, which are expensive and time-consuming. Besides reducing the design cycle, the new CFD tool has also reduced the model shop and testing expenses for each development project with fewer prototypes. In this paper, a case study for using this tool during the HVAC module development process in early stage is demonstrated.
Technical Paper

Applied CFD and Experiment for Automotive Compact Heat Exchanger Development

1998-02-01
980426
This paper chronicles a heat exchanger development project that utilized an integrated development process. A combination of full-scale heat exchanger performance testing, flow visualization experiments, and computational fluid dynamics methods were used in concert to investigate flow phenomena in multilouver fins. The primary goal of this project was to confirm the flow and heat transfer enhancement mechanisms at work in multilouver fins. A second goal was correlation of flow visualization, CFD, and traditional full-scale heat exchanger testing. Excellent agreement was found between the three methods.
Technical Paper

Validation of 3-D Passenger Compartment Hot Soak and Cool-Down Analysis for Virtual Thermal Comfort Engineering

2002-03-04
2002-01-1304
Simulation of passenger compartment climatic conditions is becoming increasingly important as a complement to wind tunnel and field testing to help achieve improved thermal comfort while reducing vehicle development time and cost. Thermal analysis of a passenger compartment involves not only geometric complexity but also strong interactions between airflow and three modes of heat transfer, namely, heat conduction, convection, and thermal radiation. The present full 3-D CFD analysis takes into account the geometrical configuration of the passenger compartment including glazing surfaces and pertinent physical and thermal properties of the enclosure with particular emphasis on glass properties. This CFD analysis is coupled with a thermal comfort model in the Virtual Thermal Comfort Engineering (VTCE) Process that was described in [1].
X