Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Solar Flare Protection for Manned Lunar Missions: Analysis of the October 1989 Proton Flare Event

1991-07-01
911351
Several large solar proton events occurred in the latter half of 1989. For a moderately shielded spacecraft in free space, the potential exposure would have been greatest for the flare which occurred between October 19 to 27, 1989. This flare was comparable to the large flare event of August 1972. The temporal variations of the proton energy spectra at approximately 1 AU were monitored by the GOES-7 satellite. These data, recorded and processed at the NOAA-Boulder Space Environment Laboratory, provide the opportunity to analyze dose rates and cumulative doses which might be incurred by astronauts in transit to, or on, the moon. Of particular importance in such an event is the time development of exposure in the early phases of the flare, for which dose rates may range over many orders of magnitude in the first few hours. Consequently, special attention is given to the early time variation of the dose rate.
Technical Paper

CAD Model of Astronaut Radiation Exposures During EVA: Nominal and Extreme Scenarios

2002-07-15
2002-01-2458
Trapped protons and electrons in the low earth orbit (LEO) environment of the International Space Station (ISS) encountered during extra-vehicular activity (EVA) may contribute significantly to the cumulative exposure sustained by crew during extended stay missions. A recently developed CAD model of the U. S. Shuttle Space Suit is used to define the shielding properties inherent in the space suit. The model incorporates 28 separate components of the suit, with particular attention given to the helmet and backpack assemblies. Proton and electron energy spectra are taken from the NASA AP8 and AE8 environment models for solar maximum and minimum, and a simulated magnetic storm condition is derived from a 3-sigma projection of the nominal condition. Heavy-ion and electron transport codes developed at NASA-Langley are used in conjunction with the variety of space suit materials, including constituents containing metallic and non-metallic compounds as well as organic polymers.
Technical Paper

Deep-Space Radiation Exposure Analysis for Solar Cycle XXI (1975-1986)

1990-07-01
901347
Ionizing radiation exposures and associated dosimetric quantities are evaluated for the 11-year solar cycle ending in 1986. Solar flare fluences for the 55 largest flares occurring during the cycle are superimposed on the galactic cosmic ray flux. Published summaries of flare data from the Interplanetary Monitoring Platform (IMP)-7 and IMP-8 satellites are used and include flares whose integrated fluences are greater than 107 protons/cm2 for energies in excess of 10 MeV. A standard cosmic ray environment model for ion flux values at solar minimum and maximum is invoked with an assumed sinusoidal variation between the lower and upper limits. The radiation shielding analysis is carried out for equivalent water-shield thicknesses between 2 and 15 g/cm2. Results are expressed in terms of cumulative incurred dose equivalents for deep-space missions lasting between 3 months and 3 years.
Technical Paper

Egress Testing of the HL-20 Personnel Launch System

1993-07-01
932039
Human factors egress testing of the HL-20 Personnel Launch System, a reusable flight vehicle for Space Station crew rotation, was conducted in both the vertical (launch) and horizontal (landing) positions using a full-scale model. Ingress and egress of 10-person crews were investigated with volunteers representing a range of heights. For both the vertical and horizontal positions, interior structural keels had little impact on egress times which were generally less than 30 seconds. Wearing Shuttle partial pressure suits required somewhat more egress time than when ordinary flight suits were worn due to the larger helmet of the Shuttle suit.
X