Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Trends and Effects of Child Restraint Systems Based on Volvo's Swedish Accident Database

1997-11-12
973299
A positive trend to more frequent use of child restraint systems (CRS) in Sweden, during the last 20 years, is shown in this report. During the same period, the overall injury risk, for different age groups of child occupants, has decreased substantially. This indicates the high effectiveness of the child restraint systems. Children need car occupant safety systems specially designed for their size. This paper clearly states the need for child safety systems and discusses benefits and drawbacks with regard to different restraints, ages and injuries. The analysis points out, that when a crash occurs, the maximum effect of a child restraint system is not reached, if the child is not using the correct system for their size. There is even a tendency that the injury risk increases when children switch from one restraint system to another, i.e. are at the youngest ages for which the specific restraint is recommended. The background data used, is based on Volvo's traffic accident research.
Technical Paper

Guidelines for and the Design of a Car Seat Concept for Improved Protection against Neck Injuries in Rear End Car Impacts

1998-02-23
980301
Neck injuries resulting from rear end car impacts have attracted increasing attention in recent years. Although usually not life-threatening these injuries can have long-term consequences. The exact mechanism of injury has not yet been established. Several probable mechanisms occurring at different phases during the crash sequence have been suggested by researchers. The accident experience with existing seat and head restraint designs is summarized. The results show that there are many factors influencing the risk of neck injury. A high and fixed-in-position head restraint, positioned close to the head, is beneficial. Also, Individual factors, such as gender and height, and seating position, are shown to have influence on the injury risk.
Technical Paper

Severe Frontal Collisions with Partial Overlap - Two Decades of Car Safety Development

2013-04-08
2013-01-0759
Frontal Severe Partial Overlap Collisions (SPOC) also called small overlap crashes pose special challenges with respect to structural design as well as occupant protection. In the early 1990s, the SPOC test method was developed addressing 20-40% overlap against a fixed rigid barrier with initial velocities up to 65 km/h. The knowledge gained has been used in the design of Volvo vehicles since then. Important design principles include front side members orientated along the wheel envelopes together with a strong support structure utilizing a space frame principle with beams loaded mainly in tension and compression. This novel setup was first introduced in the 850-model in 1991 and has been refined and patented (2001) in later Volvo front structures. Among the design principles are multiple front side members on each side, helping energy absorption efficiency and robustness.
Technical Paper

Vertical Occupant Loading in Car Crashes; Test Methods and Countermeasures

2015-04-14
2015-01-1459
Vertical loading can cause thoracic and lumbar spine injuries to a car occupant. Crashes potentially causing occupant vertical loads include; rollover events or free flying events when the car lands on its wheels, and run off road events when the car goes into the ditch and collides with an embankment. To date, there is no standardized test method evaluating this occupant loading mechanism. The aim of this study was to develop test methods addressing vertical occupant loading for car occupants and to evaluate countermeasures for reduction of such loads. Based on real world run off road crashes, representative test track methods were developed. These complete vehicle test track methods were used to provide input to a simplified and repeatable rig test method. The rig test method comprises a dummy positioned in a seat attached to a frame and exposed to a vertical acceleration. Vertical pelvis acceleration is monitored, as an indication of potential loads through the spine.
X