Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Comparison of Measured and Predicted Human Whole-Body Inertial Properties

1997-11-12
973332
Critical in vehicle crash simulations, human body data sets include mass, moments of inertia (MOIs), and ellipsoid size for each body segment, and location and resistive torque properties for each joint. The Generator of Body Data (GEBOD) program generates these human data sets for use in multibody programs. The objective of this study was to validate GEBOD estimates by directly measuring whole-body inertial properties of 69 volunteers and comparing the results with values calculated by the Articulated Total Body (ATB) model using GEBOD data sets. While the predicted whole-body center of gravity (CG) averaged within 1 cm of the measured values in the horizontal direction, vertically the errors were much larger. The predicted principal MOI were consistently 5%-30% lower than the measured values.
Technical Paper

Predictive Simulation of Restrained Occupant Dynamics in Vehicle Rollovers

1993-03-01
930887
The capability to predictively simulate occupant dynamics in vehicle rollover crashes using the Articulated Total Body (ATB/CVS) model was validated using the results of two controlled automobile rollover crash tests. The ATB model requires the occupant's inertial, geometric, and resistive joint torque properties, the vehicle interior geometry and motion, the contact characteristics for the occupant and vehicle interactions, and the seat belt characteristics. The validation was done by first simulating one test and adjusting the contact and belt properties to obtain good comparison with the test results. Then subsequent tests were simulated using the same properties, but changing only the input vehicle kinematics. Each occupant simulation used the standard Hybrid III data set and measured vehicle interior geometry. The vehicle kinematics were generated by simulating the vehicle dynamics with the ATB model. In one rollover, roof crush significantly affected the occupant's motion.
X