Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Predictive Simulation of Restrained Occupant Dynamics in Vehicle Rollovers

1993-03-01
930887
The capability to predictively simulate occupant dynamics in vehicle rollover crashes using the Articulated Total Body (ATB/CVS) model was validated using the results of two controlled automobile rollover crash tests. The ATB model requires the occupant's inertial, geometric, and resistive joint torque properties, the vehicle interior geometry and motion, the contact characteristics for the occupant and vehicle interactions, and the seat belt characteristics. The validation was done by first simulating one test and adjusting the contact and belt properties to obtain good comparison with the test results. Then subsequent tests were simulated using the same properties, but changing only the input vehicle kinematics. Each occupant simulation used the standard Hybrid III data set and measured vehicle interior geometry. The vehicle kinematics were generated by simulating the vehicle dynamics with the ATB model. In one rollover, roof crush significantly affected the occupant's motion.
Technical Paper

Dynamic Modeling and Rollover Simulations for Evaluation of Vehicle Glazing Materials

1995-02-01
950050
The objective of this study was to mathematically model several proposed vehicle glazing materials using derived force-deflection characteristics, validate the models' dynamic behavior, and use the resulting glazing models in simulations of occupant dynamics during vehicle rollover. Simulations were performed with the three-dimensional, multibody dynamics program, the Articulated Total Body (ATB) model. The contact characteristics of side windows of tempered glass; polymethyl methacrylimide, also referred to as PMMI; and polycarbonate; as well as windshields from Ford Tempos and Jeeps, were developed from headform impact tests. These characteristics were first validated by performing simulations of the headform impact tests, and were then included in rollover simulations. Previously validated simulations of belted driver and unbelted passenger dynamics during an actual rollover accident were used as the baseline simulations.
Technical Paper

ATB Model Simulation of a Rollover Accident with Occupant Ejection

1995-02-01
950134
Computer simulations of occupant dynamics are ideal for conducting parametric studies evaluating injury countermeasures. A rollover accident was selected from the National Accident Sampling System (NASS) for simulation to validate the Articulated Total Body (ATB) model's capability to predict occupant dynamics during rollover accidents and to gain insight into injury mechanisms. Simulations of both the driver and passenger occupants which may be used in future countermeasure studies are performed. In the selected accident, a pickup truck rolled multiple times, the belted driver had minor injuries and the unrestrained passenger was ejected with fatal injuries. The body properties for both occupants were obtained using the Generator of Body Data (GEBOD) program based on their weights, heights, and sexes. The interior configuration of the vehicle compartment was modeled based on measurements taken from another vehicle of the same model.
Technical Paper

Development of Human Articulating Joint Model Parameters for Crash Dynamics Simulations

1995-11-01
952726
Sophisticated computer simulation of human response during various violent force exposure situations requires not only the validated programs, but also high quality databases, especially the data sets that characterize human body structures. Although anthropometric surveys and stereophotometric studies have been performed to create geometric and inertial property databases for the human body, there have been limited efforts on establishing the joint kinematics and resistive torque data sets. This paper presents the development, implementation, and validation of the human articulating joint model parameters for crash dynamics simulations. Measured human joint data on the voluntary range of motion and passive resistive torques were used to mathematically model the shoulder, elbow, hip, knee, and ankle joints.
Technical Paper

Prediction of an Occupant's Motion During Rollover Crashes

1986-10-27
861876
In order to understand an occupant's often violent and complicated motion during rollover accidents, the motion of an anthropomorphic dummy was predicted dynamically using a human body gross motion simulation program. The accuracy of the predicted motion was established by its favorable comparison to that recorded on high speed film during a 60 mph crash in which the vehicle rolled over four times. This vehicle motion was then modified to six other rollover crash situations for computer simulation. Significant changes in the predicted occupant motion were readily observed. Differences were also observed in occupant accelerations and impact and belt forces.
X