Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Effects of Geometric Parameters on the Sound Transmission Characteristic of Bulb Seals

2003-05-05
2003-01-1701
Sound transmission through door and window sealing systems is one important contributor to vehicle interior noise. The noise generation mechanism involves the vibration of the seal due to the unsteady wall pressures associated with the turbulent flow over the vehicle. For bulb seals, sound transmission through the seal is governed by the resonance of the seal membranes and the air cavity within the bulb (the so-called mass-air-mass resonance). The objective of this study was to develop a finite element (FE) model to predict the sound transmission loss of elastomeric bulb seals. The model was then exercized to perform a parametric study of the influence of seveal seal design parameters. The results suggest that the sound transmission loss increases as the membrane thicknesses and/or the separation distance between the two seal walls are increased. The addition of additional internal “webs” was found to have adverse effects on the sound barrier performance.
Technical Paper

Laboratory Method for Evaluating the Sound Transmission Characteristics of Primary Bulb Body Seals

1996-02-01
960193
A laboratory method was developed to evaluate the sound transmission characteristics of road vehicle body seals. Primary bulb seal samples were mounted in a fixture which approximated the geometry of a typical door-gap cavity. The seal fixture was integrated with a rigid panel into the floor of a quiet, low-speed, closed test-section wind tunnel. Flow-excited pressure fluctuations in the door-gap cavity were induced by the air stream instead of by sound waves in a quiescent environment as in standard transmission loss measurements. A soundproof anechoic enclosure located underneath the test-section floor isolated the sound receiver. The sound level reduction between the cavity pressure and the sound pressure into the enclosure, a quantity directly related to the sound transmission loss (TL) in this case, was measured accurately between the 1250 and 5000 Hz one-third octave bands.
X