Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Effect of Reformer Gas on HCCI Combustion - Part II: Low Octane Fuels

2007-04-16
2007-01-0206
Homogeneous Charge Compression Ignition (HCCI) combustion offers high fuel efficiency and some emissions benefits. However, it is difficult to control and stabilize combustion over a significant operating range because the critical compression ratio and intake temperature at which HCCI combustion can be achieved vary with operating conditions such as speed and load as well as with fuel octane number. Replacing part of the base fuel with reformer gas, (which can be produced from the base hydrocarbon fuel), alters HCCI combustion characteristics in varying ways depending on the replacement fraction and the base fuel auto-ignition characteristics. Because fuel injection quantities and ratios can be altered on a cycle-by-cycle basis during operation, injecting a variable blend of reformer gas and base fuel offers a potential HCCI combustion control mechanism.
Technical Paper

Performance and Emissions of a Converted RABA 2356 Bus Engine in Diesel and Dual Fuel Diesel/Natural Gas Operation

1993-08-01
931823
Diesel engined buses are the major means of transportation in many urban and suburban areas. Compared with other transportation systems, bus fleets are flexible, effective and low in capital cost. However, existing buses contribute to a serious air pollution problem in many cities. They also consume large amounts of diesel fuel, which is a concern for national economies where locally available natural gas could displace the more expensive petroleum-based fuel. New engine designs significantly reduce pollutants and some use alternative fuels. However, there is a huge infrastructure of existing diesel buses. Expensive new buses or bus engines will only gradually displace them, particularly in countries with weaker economies. The urgently required fuel replacement and pollution reduction benefits must be deferred into the future. These factors lead to the requirement for an economically viable, clean-burning conversion system to convert existing diesel engines to natural gas fuel.
X