Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

The KA24E Engine Test for ILSAC GF-3 Part 1: Engine Design, Operating Conditions and Wear Mechanisms

1998-10-19
982625
The Nissan KA24E engine test is designated to replace the Ford Sequence VE engine test as the low temperature valve train wear requirement for ILSAC (International Lubricant Standardization and Approval Committee) GF-3. The KA24E (recently designated the Sequence IV A) represents much of the current world-wide material and design technology while retaining the sliding cam/follower contact found in earlier engine designs. The work presented here is the first of two reports. In this first report, the physical and chemical environment the KA24E engine presents a lubricant is characterized and compared to those of the Sequence VE engine. Valve train materials and wear modes are investigated and described. Although chemical analysis of drain oils indicate the KA24E procedure does not degrade the lubricant to the extent seen in the Sequence VE test, valve train wear appears to proceed in a similar manner in both tests.
Technical Paper

Zinc Dialkyldithiophosphate-Dispersant Interactions: Effects on Solution Behavior and Wear

1992-10-01
922282
Interactions between a Zinc dialkyldithiophosphate (ZDP) and three different commercially available succinimide dispersants were observed through changes in solutions behavior, as determined by viscometry and Fourier Transform Infrared spectroscopy (FTIR), and four-ball tests. The viscometric response observed for two component blends of ZDP and succinimide dispersant in white oil changed as a function of the molar Zn to N ratio, indicative of specific interactions. The break in the viscometric response curve occurred at Zn:N=0.13 for all three succinimide dispersants. FTIR spectra of the same ZDP-dispersant blends were examined and similar Zn:N dependencies were observed. Four-ball tests measuring wear scar diameter, seizure load and weld load showed a dependence on the Zn to N ratio similar to that observed by viscometry. At very low Zn to N ratios wear and seizure load were decreased, while at higher ratios the seizure and weld loads were increased over that for ZDP alone.
X