Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Diesel Engine Response to High Fuel-Injection Pressures

1998-10-19
982683
A single-cylinder direct-injection (DI) Diesel engine (Cummins 903) equipped with a new laboratory-built electronically controlled high injection pressure fuel unit (HIP) was studied in order to evaluate design strategies for achieving a high power density (HPD) compression ignition (CI) engine. In performing the present parametric study of engine response to design changes, the HIP was designed to deliver injection pressures variable to over 210 MPa (30,625psi). Among other parameters investigated for the analysis of the I-IPD DI-CI engine with an HIP were the air/fuel ratio ranging from 18 to 36, and intake air temperature as high as 205°C (400°F). The high temperatures in the latter were considered in order to evaluate combustion reactions expected in an uncooled (or low-heat-rejection) engine for a HPD, which operates without cooling the cylinder. Engine measurements from the study include: indicated mean effective pressure, fuel consumption, and smoke emissions.
Technical Paper

Study of High-Pressure Injection DI Diesel Engine

1999-10-25
1999-01-3494
Visualization of in-cylinder reaction processes and performance analysis of a direct-injection Diesel engine equipped with a high injection pressure (HIP) unit were conducted. The study was directed towards evaluation of high-power-density (HPD) engine design strategies, which utilize more intake air operating at rich overall fuel-air ratios. Two separate engine apparatus were used in this study: a Cummins 903 engine and a single-cylinder optical engine equipped with the same family engine components including the cylinder head. The engines were mated with an intensifier-type HIP fuel system fabricated at Rutgers which can deliver fuel injection pressure of over 200 MPa (30,000psi). The one-of-a-kind high-speed four-band infrared (IR) imaging system was used to obtain over fifteen hundred sets of spectral digital movies under varied engine design and operating conditions for the present analysis.
X