Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

High-speed Imaging from Consecutive Cycles

2001-09-24
2001-01-3486
A new high-speed data handling method has been developed by advancing the Rutgers Super Imaging System (SIS) (having four units of infrared digital cameras) in order to capture successive in-cylinder spectral thermal images at high rates from consecutive cycles (HSI-CC). The present HSI-CC method has been made possible by incorporating recent advancements in digital data handling peripheral devices and development of new dedicated computer programs including an MS Window-based operating system (WOS) for the SIS. The SIS-HSI-CC permits simultaneous high-speed imaging of four (4) sets of 64 sequential images (or 128 images) at rates of over 2,000 frames/camera/sec in each cycle, which can be repeated for as many as 150 consecutive cycles. This amounts to a data volume of nearly 400 mega bytes (in 12-bit dynamic resolution) in an experiment.
Technical Paper

In-cylinder Liquid Fuel Layers, Cause of Unburned Hydrocarbon and Deposit Formation in SI Engines?

1999-10-25
1999-01-3579
In-cylinder reaction processes in a production port-fuel-injection (PFI) spark-ignition engine having optical access were visualized using a high speed four-spectra IR Imaging system. Over one thousand sets of digital movies were accumulated for this study. To conduct a close analysis of this vast amount of results, a new data analysis and presentation method was developed, which permits the simultaneous display of as many as twenty-eight (28) digital movies over a single PC screen in a controlled manner, which is called the Rutgers Animation Program (RAP for short). The results of this parametric study of the in-cylinder processes (including the period before and after the presence of luminous flame fronts) suggest that, even after the engine was well warmed, liquid fuel layers (LFL) are formed over and in the vicinity of the intake valve to which the PFI was mated.
Technical Paper

Study of High-Pressure Injection DI Diesel Engine

1999-10-25
1999-01-3494
Visualization of in-cylinder reaction processes and performance analysis of a direct-injection Diesel engine equipped with a high injection pressure (HIP) unit were conducted. The study was directed towards evaluation of high-power-density (HPD) engine design strategies, which utilize more intake air operating at rich overall fuel-air ratios. Two separate engine apparatus were used in this study: a Cummins 903 engine and a single-cylinder optical engine equipped with the same family engine components including the cylinder head. The engines were mated with an intensifier-type HIP fuel system fabricated at Rutgers which can deliver fuel injection pressure of over 200 MPa (30,000psi). The one-of-a-kind high-speed four-band infrared (IR) imaging system was used to obtain over fifteen hundred sets of spectral digital movies under varied engine design and operating conditions for the present analysis.
X