Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

HCCI of Wet Ethanol on a Dedicated Cylinder of a Diesel Engine

2017-03-28
2017-01-0733
Ethanol with high levels of hydration is a low cost fuel that offers the potential to replace fossil fuels and contribute to lower carbon dioxide (CO2) emissions. However, it presents several ignition challenges depending on the hydration level and ambient temperature. Advanced combustion concepts such as homogeneous charge compression ignition (HCCI) have shown to be very tolerant to the water content in the fuel due to their non-flame propagating nature. Moreover, HCCI tends to increase engine efficiency while reducing oxides of nitrogen (NOx) emissions. In this sense, the present research demonstrates the operation of a 3-cylinder power generator engine in which two cylinders operate on conventional diesel combustion (CDC) and provide recycled exhaust gas (EGR) for the last cylinder running on wet ethanol HCCI combustion. At low engine loads the cylinders operating on CDC provide high oxygen content EGR for the dedicated HCCI cylinder.
Technical Paper

HCCI of wet ethanol on dedicated cylinder of a diesel engine using exhaust heat recovery

2018-09-03
2018-36-0191
Low cost ethanol with high levels of hydrations is a fuel that can be easily produced and that offers the potential to replace fossil fuels and contribute to reduce greenhouse gas emissions. However, it shows several ignition challenges depending on the hydration level, ambient temperature compression ratio and other engine-specific aspects. Advanced combustion concepts such as homogeneous charge compression ignition (HCCI) have shown to be very tolerant to the water content in the fuel due to their non-flame propagating nature. Moreover, HCCI tends to increase engine efficiency while reducing oxides of nitrogen (NOx) emissions. In this sense, the present research demonstrates the operation of a 3-cylinder power generator engine in which two cylinders operate on conventional diesel combustion (CDC) and provide recycled exhaust gas (EGR) for the last cylinder running on wet ethanol HCCI combustion.
Technical Paper

Comparison of Performance, Efficiency and Emissions between Gasoline and E85 in a Two-Stroke Poppet Valve Engine with Lean Boost CAI Operation

2015-04-14
2015-01-0827
Controlled Auto Ignition (CAI), also known as Homogeneous Charge Compression Ignition (HCCI), is one of the most promising combustion technologies to reduce the fuel consumption and NOx emissions. Most research on CAI/HCCI combustion operations have been carried out in 4-stroke gasoline engines, despite it was originally employed to improve the part-load combustion and emission in the two-stroke gasoline engine. However, conventional ported two-stroke engines suffer from durability and high emissions. In order to take advantage of the high power density of the two-stroke cycle operation and avoid the difficulties of the ported engine, systematic research and development works have been carried out on the two-stroke cycle operation in a 4-valves gasoline engine. CAI combustion was achieved over a large range of operating conditions when the relative air/fuel ratio (lambda) was kept at one as measured by an exhaust lambda sensor.
X