Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Effect of Fuel Sulfur on Emissions in California Low Emission Vehicles

1998-10-19
982726
The Coordinating Research Council conducted a program to measure the effect of fuel sulfur on emissions from California Low Emission Vehicles (LEVs). Twelve vehicles, two each from six production LEV models, were tested using low mileage as-received catalysts and catalysts aged to 100k by each vehicle manufacturer using “rapid-aging” procedures. There were seven test fuels: five conventional fuels with sulfur ranging from 30 to 630 ppm, and two California reformulated gasoline (RFG) with sulfur of 30 and 150 ppm. Reducing fuel sulfur produced statistically significant reductions in LEV fleet emissions of NMHC, NOx and CO. Comparing conventional fuel and California RFG at the same sulfur level: California RFG had lower NMHC and NOx emissions and higher CO emissions, but only some NMHC and NOx differences and none of the CO differences between conventional and California RFG were statistically significant.
Technical Paper

Oxygenates screening for AdvancedPetroleum-Based Diesel Fuels: Part 2. The Effect of Oxygenate Blending Compounds on Exhaust Emissions

2001-09-24
2001-01-3632
Adding oxygenates to diesel fuel has shown the potential for reducing particulate (PM) emissions in the exhaust. The objective of this study was to select the most promising oxygenate compounds as blending components in diesel fuel for advanced engine testing. A fuel matrix was designed to consider the effect of molecular structure and boiling point on the ability of oxygenates to reduce engine-out exhaust emissions from a modern diesel engine. Nine test fuels including a low-sulfur (∼1 ppm), low-aromatic hydrocracked base fuel and 8 oxygenate-base fuel blends were utilized. All oxygenated fuels were formulated to contain 7% wt. of oxygen. A DaimlerChrysler OM611 CIDI engine for light-duty vehicles was controlled with a SwRI Rapid Prototyping Electronic Control System. The base fuel was evaluated in four speed-load modes and oxygenated blends only in one mode. Each operating mode and fuel combination was run in triplicate.
Technical Paper

Impact of Engine Operating Conditions on Low-NOx Emissions in a Light-Duty CIDI Engine Using Advanced Fuels

2002-10-21
2002-01-2884
The control of NOx emissions is the greatest technical challenge in meeting future emission regulations for diesel engines. In this work, a modal analysis was performed for developing an engine control strategy to take advantage of fuel properties to minimize engine-out NOx emissions. This work focused on the use of EGR to reduce NOx while counteracting anticipated PM increases by using oxygenated fuels. A DaimlerChrysler OM611 CIDI engine for light-duty vehicles was controlled with a SwRI Rapid Prototyping Electronic Control System. Engine mapping consisted of sweeping parameters of greatest NOx impact, starting with OEM injection timing (including pilot injection) and EGR. The engine control strategy consisted of increased EGR and simultaneous modulation of both main and pilot injection timing to minimize NOx and PM emission indexes with constraints based on the impact of the modulation on BSFC, Smoke, Boost and BSHC.
Technical Paper

Effects of Biodiesel Fuels Upon Criteria Emissions

2011-08-30
2011-01-1943
Biodiesel is a renewable transportation fuel consisting of fatty acid methyl esters (FAME), generally produced by transesterification of vegetable oils and animal fats. The effects of biodiesel usage upon vehicle emissions have been investigated by numerous groups. A consensus view has developed that emissions of hydrocarbons (HC), carbon monoxide (CO) and fine particulate matter (PM) can be reduced by use of biodiesel, while oxides of nitrogen (NOx) increase slightly. This paper provides a review of the literature regarding the effects of biodiesel upon emissions of these four criteria pollutants. The emissions database was restricted to studies in which both biodiesel and a conventional diesel fuel were tested under identical dynamometer conditions. Both heavy-duty (HD) and light-duty (LD) engines/vehicles were considered.
Technical Paper

Biodistillate Transportation Fuels 2. - Emissions Impacts

2009-11-02
2009-01-2724
Diesel vehicles are significant sources of NOx and PM emissions, and to a lesser extent, emissions of CO, HC, and toxic species. For many years, biodiesel fuel (and blends of biodiesel) has been promoted as a “clean fuel” alternative to conventional diesel. Based upon previous reviews by EPA, a common understanding has arisen that biodiesel usage reduces CO, HC, and PM emissions significantly, but increases NOx emissions slightly. This paper discusses a recent review of 94 published reports, from the period of 2000-2008. Assessments were made of the emissions impacts of biodistillate fuels from various engine types, operating conditions, control technologies, and fuel type. In each situation, emissions from the biodistillate case were compared with emissions from a reference diesel fuel case.
Technical Paper

Emissions of Toxicologically Relevant Compounds Using Fischer-Tropsch Diesel Fuel and Aftertreatment at a Low NOx, Low Power Engine Condition

2005-10-24
2005-01-3764
Previously we reported (SAE Paper 2005-01-0475) that emissions of toxicologically relevant compounds from an engine operating at low NOx conditions using Fischer-Tropsch fuel (FT100) were lower than those emissions from the engine using an ultra-low sulfur (15 PPM sulfur) diesel fuel (BP15). Those tests were performed at two operating modes: Mode 6 (4.2 bar BMEP, 2300 RPM) and Mode 11 (2.62 bar BMEP, 1500 RPM). We wanted to evaluate the effect on emissions of operating the engine at low power (near idle) in conjunction with the low NOx strategy. Specifically, we report on emissions of total hydrocarbon (HC), carbon monoxide (CO), NOx, particulates (PM), formaldehyde, acetaldehyde, benzene, 1,3-butadiene, gas phase polyaromatic hydrocarbons (PAH's) and particle phase PAH's from a DaimlerChrysler OM611 CIDI engine using a low NOx engine operating strategy at Mode 22 (1.0 bar BMEP and 1500 RPM).
Technical Paper

Emissions of Toxicologically Relevant Compounds Using Dibutyl Maleate and Tripropylene Glycol Monomethyl Ether Diesel Fuel Additives to Lower NOx Emissions

2005-04-11
2005-01-0475
A previous paper reported (SAE Paper 2002-01-2884) that it was possible to decrease mode-weighted NOx emissions compared to the OEM calibration with corresponding increases in particulate matter (PM) emissions. These PM emission increases were partially overcome with the use of oxygenated diesel fuel additives. We wanted to know if compounds of toxicological concern were emitted more or less using oxygenated diesel fuel additives that were used in conjunction with a modified engine operating strategy to lower engine-out NOx emissions. Emissions of toxicologically relevant compounds from fuels containing triproplyene glycol monomethyl ether and dibutyl maleate were the same or lower compared to a low sulfur fuel (15 ppm sulfur) even under engine operating conditions designed to lower engine-out NOx emissions.
Technical Paper

Reversibility of Sulfur Effects on Emissions of California Low Emission Vehicles

1999-05-03
1999-01-1544
The Coordinating Research Council conducted a program to measure the reversibility of fuel sulfur effects on emissions from California Low Emission Vehicles (LEVs). Six LEV models were tested using two non-oxygenated conventional Federal fuels with 30 and 630 ppm sulfur. The following emission test sequence was used: 30 ppm fuel to establish a baseline, 630 ppm fuel, and return to 30 ppm fuel. A series of emission tests were run after return to 30 ppm to ensure that emissions had stabilized. The effect of the driving cycle on reversibility was evaluated by using both the LA4 and US06 driving cycles for mileage accumulation between emission tests after return to 30-ppm sulfur fuel. The reversibility of sulfur effects was dependent on the vehicle, driving cycle, and the pollutant. For the test fleet as a whole most but not all of the sulfur effects were reversible.
X