Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Engine calibration and driveability evaluation of a racecar

2020-01-13
2019-36-0126
The passenger car automakers are always competing to excel in vehicle characteristics related to passenger comfort and driveability aspects. The engine calibration is a theoretical and experimental procedure with the intention to extract maximum efficiency from the engine and guarantee satisfactory levels of driving for both conventional and racing cars. This paper describes the calibration procedure of a Formula SAE race car engine. The engine was a four cylinder 600 cm3 four-strokes with modified intake and exhaust systems, controlled by an engine control unit (Motec M800 ECU). These engines present optimized characteristics for high speed, in exchange for some combustion degradation in some specific operating conditions at low speed that may impair vehicle driveability. Therefore, good tip-in reaction and the progression of the torque delivery are fundamental criteria to increase the vehicle performance, specially, to those submitted to short acceleration distances.
Technical Paper

Efficient Ethanol Engines in Agricultural Aviation

2010-10-06
2010-36-0398
The aim of this paper is to show that the gains, technical and/or economical, from the use of ethanol as fuel in agricultural aviation may be even greater if the aircraft engine is specially designed for that purpose. A specific design is also necessary if it is intended to achieve a truly "green" engine, neutral regarding carbon emissions. Using available technologies, computational tools, development methods and project management methods (Reference Model for Agricultural Machinery Development Process (RM-AMDP), the engine can be fully developed to be used specifically as an agricultural aircraft propellant operating with ethanol. In Brazil, the current fleet of agricultural airplanes has around 1500 aircrafts and almost all operating with AvGas (Aviation Gasoline). There is already in Brazil a "green" airplane, manufactured by Neiva, a subsidiary of the aircraft manufacturer Embraer. This model uses a conversion kit on the original engine to use ethanol as fuel.
Technical Paper

Affordance-Based Design of a Tool for Tire Data Analysis

2016-10-25
2016-36-0309
In the way of achieving maximum performance of a racecar several aspects of it have to be optimized. The whole picture of vehicle performance involves crossing data to find relationship among systems and identifying trends, pitfalls and optimum points. In this paper, a straightforward software tool for tire data analysis is developed and described. The software aims to integrate tire data analysis in early stages of the development process of a Formula SAE racecar. In addition, it is thought to be a learning environment to fresh team members. To establish and achieve the necessary goals, an affordancebased model was used to elicit user needs. Regarding the tires, it was possible to precisely point out what data is required to quickly fit a Pacejka tire mode and to cross raw tire data of different tires and preview the steady state balance of a vehicle.
Technical Paper

Analysis of a Formula SAE Vehicle Suspension: Chassis Tuning

2015-09-22
2015-36-0275
In the present paper, a typical Formula SAE double-wishbone suspension is discussed. This study aims to point out a preliminary chassis setup to reduce testing time on track and improve the overall performance of a prototype in a Formula SAE Skid Pad event. The influence of kinematic parameters of the suspension are analyzed to quantify how they change the capability of the tire to generate lateral force due to camber effects. To enhance results, special attention is given to a Magic Formula tire model based on a constrained forces and moments tire test data. Camber and Ackermann steering geometry showed up as major tuning tools to attempt during test period.
Technical Paper

Design and optimization of the intake system of a Formula SAE race engine

2020-01-13
2019-36-0253
Several motorsport competitions impose restrictions on intake systems to limit maximum engine power. Since the restriction interferes with the efficiency of the intake system as a whole, it is necessary to study ways to minimize the negative effect of changes in engine performance. In practice, the regulation imposes restrictions to the inlet air which motivates the search for the minimum pressure loss in the restrictor while maintaining an equal volumetric efficiency between the cylinders. This way, it is necessary to tune the duct lengths and diameters, and plenum volume to obtain the maximum volumetric efficiency in the most required speeds. Formula SAE competition imposes an intake system restriction of 20 mm or 19 mm diameter (for gasoline or ethanol fueled engines, respectively). Thus, to reduce pressure loss in the imposed restriction orifice, a system with a convergent divergent duct forming a venturi tube was used.
X