Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

A Study of Energy Released During Premixed Combustion

1993-09-01
932478
The paper* describes the analysis of experimental results of a laboratory flow apparatus used to measure the energy released during premixed combustion at atmospheric pressure in near quiescent air. The flow apparatus, described in a parallel paper, has the means to provide air temperatures in the range between 800 and 950° K. An infrared radiation detector and a photodiode sensitive to radiation in the visible range of the electromagnetic spectrum monitor the events taking place inside the combustion chamber through a sapphire lens. A beam splitter permits simultaneous observation of the combustion events by both sensors. The difference in response times between the two sensors offers information about the non-luminous premixed combustion. Four fuels, No. 2-D diesel fuel, a 50/50% volumetric mixture of diesel fuel and sunflower oil, neat sunflower oil, and neat high oleic safflower oil were used.
Technical Paper

Apparatus for Premixed Combustion Analysis

1993-09-01
932477
The paper* describes the design and operation of a laboratory combustion chamber used to study the energy released during the premixed burning phase of diesel combustion. The flow apparatus operates at atmospheric pressure and has the means to provide near quiescent air at temperatures in the range between 800 and 950° K which is the typical temperature range at the end of compression stroke in a diesel engine. A rotary injection pump with a trigger mechanism delivers equal amounts of fuel to an injector, which sprays it into the constantly replenished supply of fresh, hot air for combustion. An infrared radiation detector and a photodiode sensitive to radiation in the visible range of the electromagnetic spectrum monitor the events taking place inside the combustion chamber through a sapphire lens. A beam splitter permits simultaneous observation of the combustion events by both sensors.
Technical Paper

The Effect of Structural Stiffness on Occupant Response for a -Gx Acceleration Impact

1996-10-01
962374
This study relates the structural stiffness and kinetic energy of impact to the dynamic response of a belted vehicle occupant. Acceleration time histories of impact for structures with different stiffnesses were obtained by performing a finite element analysis using the LS-DYNA3D finite element program and a model representing a structural member made of AISI 4340 steel. For the human body dynamics analysis, the Articulated Total Body (ATB) computer program was used to perform six simulations of a 50 percentile male restrained by a 3-point seatbelt system for a co-linear -Gx impact.
X