Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Permeable Membrane Experiment

1993-07-01
932161
The purpose of the Permeable Membrane Experiment is to gather flight data on three areas of membrane performance that are influenced by the presence of gravity. These areas are: (1) liquid/gas phase separation, (2) gas bubble interference with diffusion through porous membranes and (3) wetting characteristics of hydrophilic membrane surfaces. These data are important in understanding the behavior of membrane/liquid/gas interfaces where surface tension forces predominate. The data will be compared with 1-g data already obtained and with predicted microgravity behavior. The data will be used to develop designs for phase separation and plant nutrient delivery systems and will be available to the life support community for use in developing technologies which employ membranes. A conceptual design has been developed to conduct three membrane experiments, in sequence, aboard a single Complex Autonomous Payload (CAP) carrier to be carried in the Shuttle Orbiter payload bay.
Technical Paper

P-MASS AND P-GBA: TWO NEW HARDWARE DEVELOPMENTS FOR GROWING PLANTS IN SPACE

1994-06-01
941545
Plant growth, and especially plant performance experiments in microgravity are limited by the currently available plant growth facilities (low light levels, inadequate nutrient delivery and atmosphere conditioning systems, insufficient science instrumentation, infrequent flight opportunities). In addition, mission durations of 10 to 14 days aboard the NSTS Space Shuttle allow for only brief periods of microgravity exposure with respect to the life cycle of a plant. Based on seed germination experiments (5 missions from 1992 - 1994), using the Generic BioProcessing Apparatus hardware (GBA), two new payloads have been designed specifically for plant growth. These payloads provide new opportunities for plant gravitational and space biology research and emphasize the investigation of plant performance (photosynthesis, biomass accumulation) in microgravity.
Technical Paper

Microgravity Root Zone Hydration Systems

2000-07-10
2000-01-2510
Accurate root zone moisture control in microgravity plant growth systems is problematic. With gravity, excess water drains along a vertical gradient, and water recovery is easily accomplished. In microgravity, the distribution of water is less predictable and can easily lead to flooding, as well as anoxia. Microgravity water delivery systems range from solidified agar, water-saturated foams, soils and hydroponics soil surrogates including matrix-free porous tube delivery systems. Surface tension and wetting along the root substrate provides the means for adequate and uniform water distribution. Reliable active soil moisture sensors for an automated microgravity water delivery system currently do not exist. Surrogate parameters such as water delivery pressure have been less successful.
X